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Abstract. The use of physical computing devices as teaching tools presents sev-

eral challenges for educators and learners. Most introductory programming envi-

ronments help to learn programming by removing the possibility of syntax errors, 

usually by using a visual programming language. However, understanding syntax 

is just one aspect of the learning process. One of the most challenging tasks for 

students is to build a correct mental model of the underlying machine model and 

its execution dynamics. Additionally, visual programming languages present is-

sues when transitioning to text-based languages. In this paper we present Physical 

Bits, a web-based programming environment for educational robotics that at-

tempts to solve these issues by providing a live programming experience using 

both visual and textual programming languages. 

Keywords: educational robotics, live programming, block-based, introductory 

programming. 

1 Introduction 

In the last couple of decades, the use of physical computing devices as teaching tools 

has increased all over the world. Experts agree on the importance of introducing chil-

dren to computational thinking, programming, and technology. Using robots in the 

classroom encourages students into learning these concepts. 

Teaching programming to young children is not a recent trend, there have been ex-

periences designing and implementing educational programming environments since 

the 1970 [1] [2]. Most educational programming environments developed in recent 

years share the same visual programming style, usually in the form of blocks that snap 

together when they form valid constructs (inspired by Scratch [3]). Studies show that 

visual programming environments help to learn programming by removing the possi-
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bility of syntax errors and simplifying the programming language, which allows stu-

dents to focus on understanding the underlying concepts [4] [5]. However, some studies 

reveal that learning the syntax is not the principal problem because the students only 

struggle with it at an early stage. One of the most challenging tasks for students to 

assimilate is to correctly predict the impact of the source code they are writing on the 

actions performed when the program is executed. Teaching programming presents a 

dichotomy that is not easy to grasp for beginners: the source code is explicit and visible 

while the execution dynamics are implicit and harder to understand. Studies show that 

most student misconceptions are related to an imprecise perception of the execution 

model presented by the programming language [6]. 

In order to solve this problem, some studies propose to design educational program-

ming environments in a way that makes the relationship between the source code and 

its effects more explicit. Most virtual introductory programming environments provide 

the impression of changing a program while it is running, a feature often described as 

liveness  [7]. In a live programming environment, the users change the program and 

receive immediate feedback on the effect of the change, without requiring any manual 

compilation steps and minimizing the time wasted waiting for the code to begin exe-

cuting. Live programming shortens the feedback loop and encourages experimentation 

and programming by “Trial & error” [4]. Some environments also support monitoring 

the internal state of the program by showing the value of the variables as well as high-

lighting the currently executing blocks. These features, however, are rarely seen in ed-

ucational programming environment for physical devices [8]  and the ones that support 

it usually do so in detriment of the autonomy of the robot, requiring a computer con-

nected at all times in order to run the programs and send the commands to the robot as 

they are executed. Due to the latency of the communication, these environments are 

limited to projects that do not require precise timing and cannot be used in many robot-

ics competitions. 

Another common problem identified with teaching using visual programming envi-

ronments is the eventual transition to text-based languages. Most block-based program-

ming environments do not aid the learner in the transition to text-based languages, in-

stead they are more concerned with simplifying the programming language and hiding 

the complicated syntax rules. This has led to a perceived “lack of authenticity”: some 

students tend to think of block-based programming as not “real programming”, poten-

tially damaging their effectiveness in introductory courses [4].  Another problem found 

when using visual programming environments is referred to as “syntax overload” [9]. 

In a study performed by Powers et al. [10] a CS0 course started using the Alice visual 

programming environment and then moved to a text-based programming language (ei-

ther Java or C++). The authors report the transition was unsuccessful. Students were 

overwhelmed and frustrated by the strict syntax requirements of the text-based lan-

guages. Furthermore, some students ended up acquiring poor programming habits that 

damaged their ability to work with text-based languages. A few different solutions have 

been proposed to alleviate this problem, such as: using blocks that look like text, auto-

matic placement of syntax, and helpful syntax errors instead of removing the syntax 

altogether [9]. 

In this paper we present our attempt at solving these problems. 
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2 Proposed solution 

We have developed Physical Bits, a web-based programming environment for educa-

tional robotics. All the code for the system is open source1 and, at the time of this writ-

ing, we have made five public releases with varying levels of functionality. We have 

decided to initially target the Arduino platform because of its low cost and popularity 

but we have designed the system with portability in mind and we plan to support other 

hardware platforms in the future. 

Physical Bits was designed to solve the above-mentioned problems; thus, it supports 

a set of features that distinguish it from other similar tools. In this section we will briefly 

describe those features in relation to the problems identified above. 

2.1 Live programming and autonomy 

The programming environment is supported by a virtual machine responsible for exe-

cuting the user programs. This virtual machine is installed on the robot, allowing Phys-

ical Bits to provide a live programming experience without sacrificing the autonomy of 

the robot, which is required for most projects. The programming tools connect to the 

robot through a serial port and every change made to the user program is automatically 

compiled, verified, and transmitted to the virtual machine, taking less than 100 milli-

seconds, after which the robot will start to execute the new program. This allows to 

shorten the feedback loop, encouraging experimentation and programming by “trial and 

error”. Furthermore, if the robot is connected to the computer, the environment displays 

all the values of the sensors as well as the global variables declared in the program. 

Making the data concrete and visible helps the user understand the underlying machine 

model [6]. Finally, the environment also supports classic debugging features such as 

breakpoints at arbitrary instructions and step-by-step execution. Apart from aiding the 

user in the process of fixing programming errors, this feature makes the underlying 

machine model visible, thus helping the students make the correct mental model. 

2.2 Block-based and text-based programming 

Recognizing the benefits of visual programming, Physical Bits includes a block-based 

language suitable for beginners. However, in order to avoid the above-mentioned issues 

Physical Bits also supports text-based programming using a custom programming lan-

guage designed specifically for educational robotics. We decided to develop our own 

programming language instead of using an already established one for a simple reason: 

we can control its syntax and ensure it is minimal while also providing useful constructs 

for the robotics domain. This custom language is inspired by the C programming lan-

guage but it is much more simple and limited, focused only on educational robotics. 

 
1  https://github.com/GIRA/UziScript 

https://github.com/GIRA/UziScript
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The carefully chosen syntax is designed to avoid the “syntax overload” problem expe-

rienced by beginners while at the same time being recognizable for experienced pro-

grammers. This language is not a goal in itself, instead we consider it as a tool to help 

the student learn more powerful and useful languages. 

In order to provide a smooth transition from block-based and text-based program-

ming the Physical Bits environment allows programming in either mode or both at the 

same time. The user can start programming by assembling blocks, not worrying about 

syntax, and the environment will automatically generate the corresponding textual code 

and display it alongside the blocks. Once the user has become so proficient using the 

visual programming language that he starts to feel its limitations, he can write textual 

code and the environment will update the blocks accordingly, allowing to compare the 

semantics of the written code with the equivalent blocks the student already knows. If, 

at any moment, the student starts to feel overwhelmed by the syntax he can go back to 

program with blocks without losing what he already wrote. The environment takes care 

of keeping both representations of the user program (visual and textual) automatically 

synchronized. This lets the student go back and forth between them as he pleases while 

learning about the relation between the language syntax and the blocks, helping smooth 

the transition without making the experience frustrating. 

3 Related work 

We have reviewed some programming environments for educational robotics in order 

to compare their features with Physical Bits. This is not an exhaustive list, as there are 

many more programming environments available and including them all would exceed 

the scope of this paper. We have selected these environments based mainly in their 

relative popularity and our own familiarity with their implementations. 

In order to compare functionality, we have selected a small number of features each 

environment can either support or not. The features we will be comparing are: 

1. Liveness: The ability to change the program while it runs and see the changes im-

mediately without manual user intervention (like clicking a button) 

2. Monitoring: The ability of the environment to automatically inspect the state of the 

running program and let the user see the value of all variables as well as the state of 

all pins or sensors in the robot. 

3. Debugging: The ability to pause the execution at any time in order to visualize the 

program execution step-by-step. 

4. Autonomy: The ability to run the programs inside the robot without being connected 

to a computer. 

5. Programming interface: Whether the environment supports block-based program-

ming, text-based programming, or both. 

The result of our analysis is presented in the table below. 
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Table 1. Programming environments comparison 

 
Liveness Monitoring Debugging  Autonomy Programming 

interface 

Physical Bits ✔ ✔ ✔ ✔ Blocks + Text 

MicroBlocks [8] ✔ ✔ ✘ ✔ Blocks only 

Physical Etoys [11] ✔ ✔ ✔ ✘ Blocks + Text 

Lego Mindstorms [12] ✘ ✔ ✘ ✔ Blocks only 

Scratch4Arduino [13] ✔ ✔ ✘ ✘ Blocks only 

Snap4Arduino [14] ✔ ✔ ✘ ✘ Blocks only 

XOD [15] ✘ ✔ ✘ ✔ Blocks only 

Ardublock [16] ✘ ✘ ✘ ✔ Blocks only 

MakeCode [17] ✘ ✘ ✘ ✔ Blocks + Text 

Arduino IDE [18] ✘ ✘ ✘ ✔ Text only 

 

Although the list is not exhaustive, this selection offers a representative picture of 

the most commonly found strategies for developing programming environments for ed-

ucational robotics. A majority of environments support visual programming in the form 

of blocks but only a few provide textual code generation.  

The most notable programming environment we reviewed is microBlocks. What dis-

tinguishes it from all the alternatives is that it took the same approach as Physical Bits: 

using a virtual machine in order to run programs autonomously in the robot while still 

providing an interactive and dynamic experience. However, microBlocks does not im-

plement any debugging tools and it does not support text-based programming (the au-

thors expressed it is one of their goals for the future). Apart from that, microBlocks 

target a different set of devices. The microBlocks virtual machine is designed for 32-

bit microcontrollers while Physical Bits works on 8-bit microcontrollers. Moreover, 

microBlocks requires at least 12Kb of RAM and 50Kb of Flash memory while Physical 

Bits requires 2Kb of RAM and 24Kb of Flash memory. 

Another interesting environment is XOD. In contrast to all other environments in 

this list, XOD is a data flow language. It uses blocks to represent nodes in a directed 

graph, in which each node can represent an input (typically a sensor), some computa-

tion, or an output (typically an actuator). The programs are built by linking nodes to-

gether, which are then used to generate the actual native program that the user can up-

load to the board.  

MakeCode caught our interest mainly because it is a web-based programming envi-

ronment that supports both blocks and text-based programming using Javascript, and it 
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provides bidirectional code generation. Although the MakeCode environment does not 

provide a live programming experience, it compensates this limitation by providing a 

virtual simulator, making it possible to test programs without a physical device. 

Finally, Physical Etoys is an extension to Etoys we developed in order to interact 

with a wide range of physical devices such as LEGO NXT, Arduino boards, innovative 

joysticks like Microsoft Kinect or Leap Motion, etc. It allows to program robots using 

either blocks or a text-based programming language (Smalltalk). However, once the 

user has modified a script using the textual mode it does not support going back to the 

blocks without losing the changes. This problem, together with its lack of autonomy, 

led us to develop the Physical Bits environment. 

4 Implementation 

4.1 Architecture 

The system is composed of three distinct components: the IDE, which is a web appli-

cation containing all the programming tools; the middleware, which is a desktop appli-

cation that handles the communication with the robot; and the firmware, which contains 

the virtual machine. 

 

 

Fig. 1. Physical Bits architecture diagram 

This architecture has several benefits. On the one hand it is flexible. The IDE, being 

a web app, could be used from any device with a web browser, such as a laptop or a 
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mobile phone. It could be installed as a native app or accessed through a web browser. 

Both the middleware and the firmware are portable: although the only implementation 

of the latter currently supports Arduino boards, the code could be ported to other types 

of robots without changes to the middleware or IDE. It is fast: compiling, verifying, 

and uploading programs using the Physical Bits IDE takes a fraction of the time re-

quired to compile an Arduino sketch, mostly because of the small size of the programs. 

And finally, the communication to the robot can be done wirelessly either using blue-

tooth or a network socket (although the current implementation has only been tested 

using a USB cable). 

4.2 Firmware 

The firmware is a regular Arduino sketch written in C++ that can be uploaded using the 

Arduino IDE. We have tested the firmware using several different boards, including: 

Arduino UNO, Micro, Nano, MEGA 2560, and Yun. We have also received reports of 

it working successfully on other compatible boards such as DuinoBot [19], Educabot 

[20], and TotemDUINO [21]. The firmware contains a stack-based high-level language 

virtual machine that executes user programs using a decode and dispatch bytecode in-

terpreter [22]. This implementation was chosen mainly because of its simplicity. Apart 

from the virtual machine, the firmware also contains a monitor program that allows it 

to interact with the middleware in the host computer. Periodically, this monitor program 

will send the status of the Arduino and receive commands, allowing the middleware to 

fully control the virtual machine, including directly manipulating the variables and the 

pin state, debug the current user program, or download a new one. By having these two 

components running on the Arduino we can provide a live programming experience 

with a short feedback loop without sacrificing autonomy. 

The firmware also contains a GPIO class that simplifies working with the Arduino 

pins. It takes care of setting the pin modes according to its usage; it stores the pin values 

in order to access them later; and it handles PWM, square wave generation, and servo 

control. This GPIO class is designed to be configurable using compile-time macros in 

order to support other pin layouts, enabling the use of different boards. 

4.3 Middleware 

The middleware contains a small set of tools that allow to compile, debug, and transmit 

the programs to the Arduino board through a serial connection. All these tools were 

originally developed using Squeak, an open source version of Smalltalk [23]. We de-

cided to use Smalltalk to build the first prototype of the middleware mainly due to of 

our familiarity with the language. We later ported this code to the Clojure programming 

language for performance and ease of deployment [24]. 

In order for the IDE to interact with these tools the middleware exposes a REST API 

containing endpoints to: connect and disconnect from the robot; compile, run, and in-

stall programs; and to retrieve the state of the robot, which includes the sensor and 

global data. The compiler takes the source code of a program in our custom program-

ming language and generates bytecodes in a format that the virtual machine can decode 
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and execute. The language includes common syntactic constructs typically found in 

structured programming languages, such as: conditionals (if-then-else), loops (while, 

until, for, repeat, etc.), procedures and functions with positional arguments, variables 

(both local and global scope supported). Additionally, we added the “task” syntax for 

defining concurrent processes. 

4.4 IDE 

The Physical Bits IDE is a web-based programming environment that supports both 

visual programming (using the Blockly library [25]) as well as textual code using a 

custom programming language loosely inspired by C. Even though the middleware 

needs to run locally in order to access the serial port, the IDE, which is composed of 

HTML and Javascript files can either be hosted locally, on a web server, or even on the 

cloud (as long as the client browser has access to the middleware’s API). 

 

 

Fig. 1. Screenshot of the IDE and its panels 

The environment is designed to provide a smooth transition from block-based pro-

gramming to text-based programming. In order to do this the student can choose to 

work on his programs using either mode or both at the same time. The environment 

takes care of translating automatically from blocks to code and back, this helps with the 

transition by showing how each block is representing in code while the user edits the 

program. 

Every time the user makes a change in the program (independent from the mode) the 

program is sent to the middleware, which compiles it, looks for syntax errors, and if the 

program is correct and the robot is connected it sends it to the robot to be executed 

immediately. Since the entire compilation process finishes within 35 ms on average, 

effectively every change in the program is automatically transmitted to the robot, which 

immediately starts executing it. 
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Apart from the instant compilation and execution, the IDE also supports inspection 

of the pins in the arduino and the variables in the program. The inspector panel is auto-

matically configured to show the current values of each pin and variable referenced in 

the program, this allows users to see the values of any sensor immediately without re-

quiring any extra code. This feature allows to make the process of programming a robot 

much more transparent and helps to understand the behavior of the program. 

Finally, if a program doesn’t behave as expected the user can stop the execution at 

any point (breakpoint) and execute it step-by-step, observing how the state of the pro-

gram changes at each step. 

5 Code example 

In order to demonstrate the programming language we made a small example program 

consisting of a robot car that autonomously wanders in a room while avoiding obstacles. 

The robot is made of two DC motors that provide movement and an ultrasonic sensor 

in the front to detect obstacles. This type of robots is very common in robotics compe-

titions such as the Roboliga, the Argentinian Robotics Olympics and the Robocup Jun-

ior, an international competition where students from around the world gather to share 

their experiences in educational robotics. 

The expected behavior of the robot is simple: it should move forward until an obsta-

cle is detected, in which case it should turn left for a second. 

 

 

Fig. 2. Blocks-based version 

The block-based program consists of a single “timer” block. This block allows to spec-

ify behavior that should be executed periodically. Inside the “timer” block we have an 

“if-then-else” block that represents a conditional statement. It reads the value of the 

ultrasonic sensor, called “sonar” in this example. If the reported value is greater than 

30 cm, it will activate both motors forward at a constant speed. Otherwise it will move 

the “leftMotor” backward and the “rightMotor” forward (making the robot turn coun-

ter-clockwise) for 1000 milliseconds. 

The autogenerated textual code is a direct translation of the blocks above, with the 

only exception of the “import” statements at the top of the program. These statements 

allow to include external libraries in the user program. In the interest of brevity, we 
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have omitted the source code for these imported libraries but they can be found in 

github2. 

import leftMotor from 'DCMotor.uzi' { 
 enablePin = D5; forwardPin = D7; reversePin = D8; 
} 
import rightMotor from 'DCMotor.uzi' { 
 enablePin = D6; forwardPin = D11; reversePin = D9; 
} 
import sonar from 'Sonar.uzi' { 
 trigPin = A5; echoPin = A4; maxDistance = 100; 
 start reading; 
} 

 
task avoidObstacles() running 1000/s { 
 if (sonar.distance_cm() > 30) { 
  leftMotor.forward(speed: 0.65); 
  rightMotor.forward(speed: 0.65); 
 } else { 
  leftMotor.backward(speed: 0.65); 
  rightMotor.forward(speed: 0.65); 
  delayMs(1000); 
 } 
} 

Just for reference we have included the same program written in the Arduino language. 

In this case, we also decided to omit the source code of the external libraries used but 

they can be found online3. 

As we can see, except for a few syntactic differences, the Arduino code is very sim-

ilar to the code generated by Physical Bits. This is by design. We have chosen the lan-

guage syntax to be very easy to understand for any experienced programmer and very 

similar to Arduino code. Our goal for this language is to be just a learning tool, an 

intermediate step before moving to more powerful languages. 

 
#include <L293.h> 
#include <NewPing.h> 

 
L293 leftMotor(5, 7, 8); 
L293 rightMotor(6, 11, 9); 
NewPing sonar(A5, A4, 100); 

 
void setup() {} 

 
void loop() { 
  delay(50); // Wait between pings to avoid echo issues 
  int dist = sonar.ping_cm(); 
  if(dist == 0 || dist > 30) { 
    leftMotor.forward(165); 
    rightMotor.forward(165); 

 
2  https://github.com/GIRA/UziScript/tree/master/uzi/libraries 
3  L293: https://github.com/qub1750ul/Arduino_L293 

NewPing: https://bitbucket.org/teckel12/arduino-new-ping/wiki/Home 

 

https://github.com/GIRA/UziScript/tree/master/uzi/libraries
https://github.com/qub1750ul/Arduino_L293
https://bitbucket.org/teckel12/arduino-new-ping/wiki/Home
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  } else { 
    leftMotor.back(165); 
    rightMotor.forward(165); 
    delay(1000); 
  } 
} 

 

One important difference, however, is the “task” construct, which just like the “timer” 

block allows to specify behavior that the robot should execute periodically. It can be 

seen as the equivalent of the loop() procedure in Arduino but with the possibility of 

declaring multiple tasks instead of just one. 

Since this capability does not exist in the Arduino language without the inclusion of 

a third-party library it can be a source of confusion for beginners. However, we feel 

that since any programming language for robotics needs to support concurrency in or-

der to be effective [26], the benefits of moving away from the Arduino execution model 

outweigh its disadvantages. 

6 Future work 

Although we have reached a point in development in which we feel confident enough 

to start using this tool with students, this project is still a work in progress. 

Some of the features described in this paper, while working in previous releases, are 

not fully integrated in the latest version of the IDE yet. These include: the watchers, the 

debugger, and the text-to-blocks translation. The latter remains an open issue due to the 

lack of a 1:1 mapping between the textual language constructs and the blocks. We have 

discussed extending the block-based language by introducing more complex blocks but 

we fear we might overwhelm the users if we provide “too many” blocks to choose from. 

Even though the discussion is still open we have decided, for the moment, to translate 

as much code as we can using the existing high-level blocks and, for any statement that 

can’t be translated, provide a special block (hidden from the user) that simply represents 

this untranslatable code. 

Apart from that, we have plans for porting the Uzi VM to other hardware platforms 

like ESP8266 and ESP32. We also plan to improve the robustness of the communica-

tion protocol with the robot. We have observed some issues that can leave the robot in 

an inconsistent state and force the user to reset the connection, interrupting the live 

experience we are trying to reach. We expect to be able to optimize the virtual machine 

in order to provide faster execution. 

Finally, some related projects we hope to develop are: a cloud repository for users 

to share their creations and discover other people’s projects; and a designer tool to help 

teachers to plan activities for their classroom. 

7 Conclusions 

We have described the more common problems found when using visual programming 

languages for teaching robotics.  
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Our proposal consists of Physical Bits: a web-based programming environment for 

educational robotics that attempts to solve these issues by providing a live programming 

experience as well as bidirectional blocks to code generation. These features make 

Physical Bits a suitable introductory environment for teaching programming using ro-

bots. We have reviewed popular alternative programming environments and compared 

its characteristics with Physical Bits. We also described the implementation of the sys-

tem as well as a small code example to demonstrate the language features. 

Although this is still a work in progress, we believe this project is a step towards our 

vision of what educational robotics should be in the future. 
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