
Exploiting Anti-Scenarios for the Non
Realizability Problem ?

Fernando Asteasuain1,2, Federico Calonge1, and Pablo Gamboa2

1 Universidad Nacional de Avellaneda, Avellaneda, Argentina
2 Universidad Abierta Interamericana - Centro de Altos Estudios CAETI, CABA,

Argentina
fasteasuain,fcalonge@undav.edu.ar,pgamboa.uai.edu.ar

Abstract. Behavioral synthesis is a technique that automatically builds
a controller for a system given its specification. This is achieved by ob-
taining a winning strategy in a game between the system and the envi-
ronment. Behavioral synthesis has been successfully applied in modern
modularization techniques such as Aspect Orientation to compose each
particular view of the system in a single piece. When a controller can not
be found the engineer faces the Non Realizability Problem. In this work
we exploit FVS a distinguishable feature in the FVS specification lan-
guage called anti-scenarios to address this problem. Several case studies
are introduced to show our proposal in action. Additionally, a perfor-
mance analysis is introduced to further validate our approach.

Keywords: Aspect Orientation, Behavioral Synthesis

1 Introduction

Modern modularization techniques have emerged in the past years aiming to
improve how the different features supported by a system interact to provide its
expected behavior. Among them, Aspect Orientation [18, 22] or Feature Oriented
Programming [3, 29] earned a distinguished reputation since they have been ap-
plied successfully in several challenging domains such as software protocols, soft-
ware architectures, hardware and robotic controllers or artificial intelligence [3,
11, 16, 22, 36], just to mention a few.

In essence what these techniques propose is to conceive a system as the
interaction and combination of its individual features. These features are also
called view or aspects, depending on the particular methodology to be employed.
For example, in the classic ATM example the system is built combining diverse
views such as security, availability, efficiency, data integrity or transaction man-
agement. Each view captures a portion of the behavior of the system. In this way
the software engineer can focus on each one without being distracted with other
irrelevant details that do not correspond to the view in turn being specified. This

? Corresponding Author: Fernando Asteasuain fasteasuain@undav.edu.ar ORCID:
0000-0002-5498-6878



2 Asteasuain et al.

kind of approach is also present in multiple ways in other software engineering
tools and techniques. Actors when defining use cases or roles when defining user
stories represent different ways (views) of interacting with the system. Similarly,
UML’s sequence diagrams aim to model localized behavior and also can be seen
as a mechanism to specify a particular behavioral perspective of the system.

The critical point when developing system is to articulate and combine each
particular view in order to produce the complete behavior of the system. This is
indeed tricky since most of the times these views interfere with each other con-
stituting a possible source of conflicts, problems and bugs. These conflicts should
not be underestimated since the correct behavior of the system may depend on
how they are addressed. For example, in the ATM system the encryption view
must act (ie, must encrypt the message) before any message is sent from the
ATM to the bank. Similarly, the encryption perspective may constitute a men-
ace to achieve successfully the efficiency view, since delays are introduced when
performing transactions.

In the Aspect Orientation approach each view is named an Aspect and the
process of combining aspects behavior is named Weaving. The problem of de-
tecting and resolving aspects interaction has been addressed by the software
engineering community [7, 14, 26, 30, 33]. Nonetheless, most of them rely on syn-
tactic mechanisms and the semantic application of aspects is hard to analyze,
explore or reason about [6, 21, 32]. In this sense, some approaches [6, 28] have
taken a different road to weave aspects employing a technique known as be-
havioral synthesis [8, 13]. Contrary to the usual development of systems, where
the implementation of the system is analyzed whether its fulfills its specification
or not, when employing behavioral synthesis the system is built in such a way
that the specification is satisfied by construction. In general, the output of the
synthesis procedure is an automaton called the controller of the system that
receives input from the environment (typically this information is provided by
sensors) and produces instructions to actuators and then waits to receive the
new information from the environment to initiate the loop one more time. The
controller is obtained employing algorithms from the artificial intelligence and
game theory domains. The objective is to produce a winning strategy that no
matters what action is taken by the environment the systems always find a way
to achieve its goals. Efficient symbolic algorithms for controller synthesis have
been presented in [8, 27].

A key issue when dealing with behavioral synthesis is how to proceed when a
controller can not be derived from the specification. This is known as realizability
checking. When the specification is non realizable the specifier must identify
the source of the problem. Generally, this is achieved manually or employing
sophisticated tools. Some approaches like [2] rely on inductive logics , work in
[23] employs the concept of counterstrategies and work in [25] adds additional
information into the specification as conflict and recovery sets of requirements.
However, the specification language used in these approaches does not provide
by itself a mechanism to help the specifier to identify the problem.



Exploiting Anti-Scenarios 3

Given this context in this work we propose to exploit a distinguishable fea-
ture of the FVS language to address non realizability in the aspect oriented
synthesis world. FVS can automatically build anti-scenarios from any property
described in the language. This gives to the specifier an intuitive, visual and
crucial information about all the possible ways things can go wrong and violate
a property. This work illustrates how anti-scenarios can be employed to tackle
non realizability in a friendly manner.

FVS is a declarative language based on graphical scenarios and features a
flexible and expressive notation with clear and solid language semantics. In [6]
we showed how FVS can be used to denote, compose and synthesize aspect
oriented behavior, including dealing with properties that can not be expressed
with Deterministic Büchi automata, which are excluded in other approaches like
[27]. We now introduce a new edge on our methodology by exploiting FVS’s
anti-scenarios to alleviate the non realizability problem.

We also conducted a performance analysis to measure the effectiveness of our
approach and explored a new tool named Acacia+ [9] to achieve our goals. The
results show that FVS turns out to be a competitive framework among others
known approaches.

To sum up, the contributions of this work can be summarized as follows:

– FVS anti-acenarios are employed to address the non realizability problem in
behavioral synthesis.

– A performance analysis is shown to compare FVS efficiency against other
tools.

– A new external tool is explored to obtain controllers.
– FVS is shown in action in new case studies in several applications and rele-

vant domains

The rest of this work is structured as follows. Section 2 briefly introduces
the FVS language, its usage in the Aspect Orientation domain and how the
behavioral synthesis is achieved. Section 3 presents the case studies and also
discusses related work. Section 4 introduces the performance analysis. Finally,
Section 5 enumerates future work whereas Section 6 present the conclusions of
this work.

2 Background

In this section we will informally describe the standing features of FVS [4, 5].
The reader is referred to [5] for a formal characterization of the language.

FVS is a graphical scenarios where scenarios and rules shape the expected
behavior of the system. FVS scenarios consists of points and relationships be-
tween them. Points can be labeled with the events that occur in those points.
In fact, a points’ label consist of a logic formula that summarizes the events
occurring on that moment. Two kind of relationships relate points: precedence,
to indicate that an event occurs before another one, and constraining, which is



4 Asteasuain et al.

used to restrict behavior between points. Finally, two special points are intro-
duced to indicate the beginning and the end of a trace. For example Figure 1
shows a typical FVS scenario modeling the behavior of a load-balancer server
example. The big black point in the left extreme represents the beginning of the
execution and the last point, which is double rounded, represents the end of the
execution. In particular the scenario describes a situation where the server is
ready once the execution started and afterwards a task is assigned such that the
server never reaches its full capacity from the moment was ready until the end
of the execution.

Fig. 1. A simple scenario in FVS

FVS rules can be seen as an implication relationship. They consist of an
scenario playing the role of the antecedent and two or more scenarios playing the
role of the consequent. The intuition is that whenever a trace matches a given
antecedent scenario, then it must also match at least one of the consequents.
When this happen we say that the rule is satisfied. The semantics of the language
is given by the set of traces that fulfills every rule. Graphically, the antecedent
is shown in black, and consequents in grey. Each item of consequents are labeled
to indicate to whom consequent they belong. As an example, an FVS rule is
shown in Figure 2. This rule says that if an TaskAssigned event occurs, then
the Server-Ready event must occurred in the past (in other words, the server was
in the ready state) and between these points the Server-Full event that indicates
that the serves reached its maximum capacity did not occur.

Fig. 2. A simple FVS rule

We now introduce the concept of anti-scenarios. Anti-scenarios can be auto-
matically generated from rule scenarios. Roughly speaking, they provide valuable
information for the developer since they represent a sketch of how things could
go wrong and violate the rule. The complete procedure is detailed in [10], but in-
formally the algorithm obtains all the situations where the antecedent is found
but none of the consequents is feasible. For example, for the previous rule in
Figure 2 two anti-scenarios are found. In one situation a task is assigned, but
the server was never ready before since the beginning of the execution. In the



Exploiting Anti-Scenarios 5

other situation, the server was indeed ready, but it reaches its maximum capacity
before the task is assigned. These two anti-scenarios are shown in Figure 3.

Fig. 3. Two anti-scenarios for the specified rule

2.1 FVS in Aspect Orientation and Behavioral Synthesis

Our previous work in [6] describes how FVS can be seen as an aspect oriented
specification language and also how it can be connected to external tools to
obtain a controller that satisfies the specification by construction. In few words,
FVS rules can be seen as aspects, where the antecedent of the rule constitutes
the poincut (those points where the aspect behavior is to be added) and the
consequent represent the behavior to be introduced by the aspect.

FVS specifications are used to obtain a controller using different tools de-
pending on the type of the property. Using the tableau algorithm detailed in [5]
FVS scenarios are translated into Büchi automata. If the automata represent
one of the specification patterns (excludings those that can not be represented
by Deterministic Büchi automata) then we obtain a controller using a technique
[27] based on the specification patterns [17] and the GR(1) subset of LTL. If
that is not the case, but the automata is a Deterministic Büchi automata we
either employ the GOAL [34] or the Acacia+ tool [9]. The performance anal-
ysis in Section 4 discusses the efficiency of these two tools. If the automaton
is non deterministic we obtain a controller using only the GOAL tool using an
intermediate translation from Büchi automata to Rabin automata.

3 Case Studies

In this section we show in action our approach to address non realizability in
aspect oriented behavioral synthesis by modeling three different and challeng-
ing case studies. These examples are shown next in the following sub sections.
Finally, Section 3.4 presents some considerations and conclusions and briefly
discusses related work.

3.1 The Vessel example

This case of study is based on the functioning of several navigation transports
introduced in [25]. In particular we consider the requirements from the vessel



6 Asteasuain et al.

example. We suppose that the basic specification describing the main behavior of
a vessel denote the base system and then we introduce some security restrictions
through the specification of an aspect named SafeNavigation. In particular, the
SafeNavigation aspect considers three requirements:

1. The vessel can be in the UnderWay state either by starting on an engine
or by sailing, but not on both modes at the same time. That is, the vessel
navigates through the river either by using a engine or blowned by the wind.

2. A vessel can be constrained by her draught, but only when is navigating.
3. The vessel can be moored, but only when using the engine.

We modeled the SafeNavigation aspect in FVS. It contemplates three rules,
one for each requirement of the aspect. The first rule says that if the UnderWay
event occurs, then either the sailing mode was selected in the past and the engine
has not been turned on since then, or viceversa, the engine was turned on in the
past and the sailing mode has not occurred during that period. The FVS rule
for this requirement is shown in Figure 4.

Fig. 4. FVS rule for requirement number one

The FVS rule in Figure 5 addresses the second and third requirements. The
rule in the top of Figure corresponds to the second requirement whereas the rule
in the botttom corresponds to the third one. In the former rule, the Constrained
by her draught event (named CbyDraught to simplify) occurs, then the Under-
Way event must had occurred in the past. The latter rule indicates that if the
Moored event occurs then the engine was turned on in the past (consequent 1),
or it was turned on later on (consequent 2).

When the SafeNavigation aspect is weaved with the base system a controller
can not be found. This is because the environment can introduce the Moored
event and then activate the sailing mode execution of the vessel. A trace like that
requires the vessel to turn on the engine (because of requirement number three),
but turning on the engine would be in conflict with requirement number one since
the sailing mode was active. This behavior can be noted when exploring the anti-
scenarios that the FVS tool generates from the rules shaping the SafeNavigation
aspect easing the job for the specifier when faced to the non realizability problem.
Three possible anti-scenarios are shown in Figure 6. The anti-scenarios in the



Exploiting Anti-Scenarios 7

Fig. 5. FVS rule for requirements number two and three

top of the Figure corresponds to behavior that violate requirement number one:
in the first one, the sailing mode is activated, afterwards the engine is turned
on and finally the vessel starts to navigate. This is a behavior violation since
both modes are active simultaneously. The second one is the analogous behavior
but just considering the engine was turned on first. The anti-scenario at the
bottom of Figure 6 violates requirement number three: the vessel is moored but
the engine was neither turned on before or after its ocurrence.

Fig. 6. Some anti-scenarios for the Safe Navigation Aspect

By just looking at the graphical information provided by these anti-scenarios
the specifier can explore possible reasons that lead to the non realizability of
the specification. In this case it can be noted that a trace like { Moored, Sail-
ing ON } would converge to a conflict since a occurrence of the Engine ON
event would match the first anti-scenario in Figure 6 (and therefore a violation
to the specification) and at the same time the absence of the Engine ON event
would match the third anti-scenario in Figure 6, leading also to violation of the
expected behavior. After this analysis the specifier can infer that the Moored
event and the sailing mode are mutually exclusive. Introducing new rules for
this extra requirement make the specification realizable and a controller con be
found. These new rules are shown in Figure 7.

3.2 The Halt-Exception Example

This example is inspired in the case of study shown in [35]. It consists of a typical
buffer implementation in a distributed environment. A producer puts data in the



8 Asteasuain et al.

Fig. 7. New rules are introduced after exploring the anti-scenarios

buffer, it waits when the buffer is complete and sets a Halt flag on when it puts
its last data. The consumer gets data from the buffer and waits when the buffer
is empty. An exception is raised when the buffer is empty, the halt flag is on
and the consumer attempts to get a data. This exception is specified with an
aspect named Halt Exception aspect. Following the strategy presented in [35]
we suppose that the specifier makes a mistake and the empty buffer condition
is not included in the rule shaping this aspect. This incomplete rule is shown in
Figure 8

Fig. 8. The incomplete FVS rule for the Halt Exception Aspect

This error makes the specification non realizable. As in the previous case the
specifier can then look at the anti-scenario that FVS can automatically generate.
The anti-scenario is shown in Figure 9. It shows how the aspect specification can
be violated. In this case the sequence of events Halt ON and Get on which the
Halt Exception does not occur until the end of the execution is a violation of
the rule.

Fig. 9. Anti-Scenarios for the Halt Exception Aspect

By just looking at the sequence the specifier might detect that the empty
buffer condition is not included and therefore spot the error in the specification.
Adding this condition lead to the realizability of the specification and a controller
is now found. The fixed rule is shown in Figure 10.

3.3 The Exam System

This example is analyzed in [6] based on the case study presented in [28]. It
consists on a Exam system which monitors and regulates students taking exams.



Exploiting Anti-Scenarios 9

Fig. 10. Fixed Rule for the Halt Exception Aspect

The system starts in a Wait state and when a students arrives it shows a welcome
screen. Then, the student takes the exam. The student can fail or pass the exam,
the systems shows an exit screen and enters the Wait state once again. Two
aspects are added next: the Tuition aspect and the Availability aspect. The first
one validates that only students that have paid their tuition take the exam and
the second one addresses a classic liveness requirement: the welcome screen will
eventually be showed for every student. The rules for these two aspects are shown
in Figure 11.

Fig. 11. Tuition and Availability aspects in the Exam System

As explained in [6] the specification containing both aspects in non realizable.
If infinitely many students are received such that only a finite number of them
have paid their tuition will lead the system not to enter the welcome state
infinitely often, which violates its specification. Faced with this problem, the
specifier might inspect anti-scenarios for both aspects. In particular, by analyzing
the anti-scenario in Figure 12 the specifier could realize that not visiting the
Welcome state infinitely often might be a too strong condition and observing
that it is enough that the systems leaves the Wait state but not necessarily
enters the Welcome state.

Fig. 12. An anti-scenario for the Availability aspect



10 Asteasuain et al.

The new rule introducing a more relaxed Availability aspect is shown in
Figure 13. With this new rule a controller is found for the Exam system.

Fig. 13. A more general Availability Aspect solving non the realizability problem

3.4 Remarks, Observations and Related Work

In all of the examples anti-scenarios provide meaningful information to solve
the non realizability problem. We believe that is an appealing feature since it
is provided by the specification language itself and there is no need to interact
with external tools. Others technique such as [23, 27] involves exchanging roles
between environment and the system and try to discover in the winning strategy
for the environment what behavior is obstructing the finding of a controller.
Naturally, this can be achieved if anti-scenarios do not result in an effective
weapon to solve the problem. Work in [25] provides a interesting solution to non
realizability defining extra definitions such as Conflict Sets and Recovery Sets
of Requirements. These definitions and the use of coloured automata allow the
detection of possible conflicts between requirements that might lead to the non
realizability of the specification. Finally, work in [2] proposes the us of inductive
logic to solve non realizability. Inductive logics infers some missing information
in the specification based on negative ans positive examples and its output could
be used to solve non-realizability. We consider that our approach is orthogonal to
these other works and could be easily combined. However, we affirm that taking
the advantage of exploring anti-scenarios which are automatically obtained from
the specification itself (win non costs or efforts for the specifier) is an captivating
first setp to address the non realizability problem in behavioral synthesis.

4 Performance Analysis

In this section we describe some performance analysis regarding employing FVS
as an aspect oriented behavioral synthesis. Since we relay on external tools to
solve the game between the environment and the system to obtain a controller
we are in particular interested on measuring if the automata produced by our
approach is comparable and competitive with other approaches. To achieve this
objective we compare the time taken to obtain a controller taken as input FVS
specifications versus other approaches since the algorithms involved depend on
the size of the automata.

Also, we compare the performance of the two tools used to obtain a controller
in our work: GOAL and Acacia+. In previous work such as [6] we employed



Exploiting Anti-Scenarios 11

the GOAL tool to resolve the behavioral synthesis problem. GOAL is a very
powerful tool to rely on during the verification phase since it can handle several
formalisms for automata and temporal logics and also, it implements several
game solving algorithms such as [19, 20, 31, 37]. For this paper we also employ an
attractive tool called Acacia+, an efficient tool for solving synthesis specifications
implemented in Python and C. It can be easily downloaded from its site [1]
and also can be executed online. Instead of employing BDDs (Binary Decision
Diagrams) as the main structure of data is uses the concept of antichains [12,
15] with satisfactory results in some domains [9]. It takes as input LTL formulae
as well as automata notations.

The rest of this section is structured as follows. Section 4.1 analyzes the per-
formance of the external tools interacting with FVS, Section 4.2 compares FVS
against other two approaches whereas Section 4.3 includes some final consider-
ations regarding this performance experiment.

4.1 GOAL vs Acacia+ vs Specification Patterns

In this section we compare FVS performance using different external tools and
kinds of specifications. As it is mentioned earlier in section 2 we rely on several
techniques to realize the behavioral synthesis: using the GR(1) technique in [27]
if the properties modeling the expected behavior of the system can be denoted
with most of the specifications patterns [17], using GOAL and Acacia+ with
Deterministic Büchi and finally, using GOAL with Non Deterministic Büchi.

Table 1 resumes this performance analysis. The time is measured in seconds
taking the average time to obtain the controller for all the case of studies in-
troduced in Section 3. For all the problems we divided the set of requirements
as follows: set 1 contains only properties denoted by specification patterns (ex-
cepting those ones that can not be represented by Deterministic Büchi), set 2
contains properties beyond specification patterns but still represented by Deter-
ministic Büchi automata and finally, set 3 contains properties expressible only
by Non Deterministic Büchi automata.

Table 1. FVS Performance with External Tools

Set-Tool FVS-GOAL FVS-Acacia+ FVS-GR(1)

Set 1 sec 4 sec 2 sec 1 sec

Set 2 sec 7 sec 5 sec -

Set 3 sec 20 sec - -

It can be observed that the technique introduced by [27] (denoted by the
column FVS-GR(1) in Table 1) is the most efficient in time when the behav-
ior can be expressed by most of the specification patterns. In the same row,
Acacia+ comes in second place while the GOAL tool ends at the bottom but
close to Acacia+. Acacia+ leverages the advantage moving on to the second



12 Asteasuain et al.

row, using Deterministic Büchi automata. Finally, only GOAL is able to handle
requirements in set 3, which includes Non Deterministic Büchi automata. The
GR(1) technique in [27] is only available for behavior denoted in the the first
set of requirements. These results can definitely guide the specifier when choos-
ing the external tool to perform the behavioral synthesis using as input FVS
specifications.

4.2 Efficiency comparison

We now compare FVS against other approaches in those cases where performance
times are available or can be obtained. We use only properties can could be
expressed by Deterministic Büchi automata.

For the Exam System paper in [27] reports that 3.5 seconds is taken to obtain
a controller using their approach based on the use of specification patterns.
Employing FVS we obtained 4.5 seconds, since larger automata are used in
our case. However, the difference is not a significative one. In [6] we add some
extra requirement using specification patterns not covered in [27] since they can
only be expressed with :the Precedence pattern with After Q scope, the Response
Chain pattern (with one stimuli and two responses) with After q until r scope
and the Constrained Chain pattern with After q until r scope and the Precedence
pattern with After Q scope. In this case it took FVS-GOAL 33 seconds to obtain
the controller.

For the Vessel System using Acacia+ with its own specification language a
controller is obtained in 7 seconds, whereas the tool took 11 seconds to obtain
the controller when using FVS-Specifications as input. It is worth noticing that
Acacia+ specifications language is more complex since Conflicting and Recovery
set of requirements need to be specified. This extra effort added to the specifi-
cation was not measured for the performance experiment. In FVS no additional
information need to be provided besides the rules shaping the behavior of the
system.

For the Halt-Exception example no comparison can be made since in [35] the
bug in the specification is detected using traditional model checking whereas in
this work we employed a behavioral synthesis approach. Nonetheless, FVS spec-
ification can be used in a traditional model checking approach. In this domain
we do not expect great differences in the elapsed time of execution since the size
of the automata involved are similar [5]. Table 2 summarizes the performance
analysis of this section.

Table 2. Comparison Against Other Approaches

Example-Tool Acacia+ Patterns FVS

Vessel Example 7 sec - 11 sec

Exam System - 3.5 sec 4.5 sec



Exploiting Anti-Scenarios 13

4.3 Final Observations

From the performance analysis several interesting conclusions can be taken. For
one side, FVS is behind in time execution against other approaches. However,
the difference is not a significative one and barely has impact in the analyzed
examples. On the other side, it is the only one that is able to handle all type
of specifications, specially considering Non Deterministic Büchi automata. We
believe this power expression enrichment of the specification language outweighs
the loss in performance. Regarding anti-scenarios and the non realizability prob-
lem we believe the information provided by the anti-scenarios can solve faster
the problem than feeding external tools. However, this must be concluded after
an empiric study that is out of scope of this paper and addressed as future work.

5 Future Work

This work pinpoints several research line to further continue our proposal. In
the first place we would like to measure the effectiveness of the use of anti-
scenarios to solve the non realizability problem. This would imply the realization
of an experiment that compares the results obtained by employing anti-scenarios
against the usage of other techniques. The experiment should be designed to asses
the percentage of non realizability problems solved and the time and resources
taken to solve the problem. Secondly, we would like to employ our technique in
the hardware verification and software architecture domain to take advantage
of FVS’s flexibility and expressive power. Finally, we would like to improve the
efficiency of our tool. In order to achieve this goal the algorithm that translates
FVS scenarios into Büchi automata must be analyzed aiming to reduce the size
of the automata given as output.

6 Conclusions

In this work we exploit FVS’s capability of automatically building anti-scenarios
to address the non realizability problem when performing behavioral synthesis in
aspect orientation. Anti-scenarios represent a meaningful graphical descriptions
of situations and executions of the system that violates the specification and
thus can be analyzed in order to solve the non realizability problem. The main
advantage of this approach is that this information is provided by the specifica-
tion language and there exists no need to interact with external tools that might
make the process more complex. The proposal is validated with several and rele-
vant case studies. Finally, a performance analysis is introduced to compare FVS
interaction with synthesis tools and with other approaches as well.

References

1. Acacia+ web site: http://lit2.ulb.ac.be/acaciaplus/.



14 Asteasuain et al.

2. D. Alrajeh, J. Kramer, A. Russo, and S. Uchitel. Learning operational require-
ments from goal models. In 2009 IEEE 31st International Conference on Software
Engineering, pages 265–275. IEEE, 2009.

3. S. Apel, D. Batory, C. Kästner, and G. Saake. Feature-oriented software product
lines. Springer, 2016.

4. F. Asteasuain and V. Braberman. Specification patterns: formal and easy. IJSEKE,
25(04):669–700, 2015.

5. F. Asteasuain and V. Braberman. Declaratively building behavior by means
of scenario clauses. Requirements Engineering, 22(2):239–274, 2017. doi:10.1007/
s00766-015-0242-2

6. F. Asteasuain, F. Calonge, and P. Gamboa. Aspect oriented behavioral synthesis.
In ISBN 978-987-688-377-1, pages 622-631, CACIC, 2019.

7. L. M. Bergmans. Towards detection of semantic conflicts between crosscutting
concerns. Analysis of Aspect-Oriented Software (ECOOP 2003), 2003.

8. R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Sa’Ar. Synthesis of
reactive (1) designs. 2011.

9. A. Bohy, V. Bruyère, E. Filiot, N. Jin, and J.-F. Raskin. Acacia+, a tool for ltl
synthesis. In International Conference on Computer Aided Verification, pages 652–
657. Springer, 2012.

10. V. Braberman, D. Garbervestky, N. Kicillof, D. Monteverde, and A. Olivero. Speed-
ing up model checking of timed-models by combining scenario specialization and live
component analysis. In International Conference on Formal Modeling and Analysis
of Timed Systems, pages 58–72. Springer, 2009.

11. T. Cerny. Aspect-oriented challenges in system integration with microservices, soa
and iot. Enterprise Information Systems, 13(4):467–489, 2019.

12. M. De Wulf, L. Doyen, T. A. Henzinger, and J.-F. Raskin. Antichains: A new
algorithm for checking universality of finite automata. In International Conference
on Computer Aided Verification, pages 17–30. Springer, 2006.

13. N. DIppolito, V. Braberman, N. Piterman, and S. Uchitel. Synthesising non-
anomalous event-based controllers for liveness goals. ACM Tran, 22(9), 2013.

14. C. Disenfeld and S. Katz. A closer look at aspect interference and cooperation. In
AOSD, pages 107–118. ACM, 2012.

15. L. Doyen and J.-F. Raskin. Improved algorithms for the automata-based approach
to model-checking. In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, pages 451–465. Springer, 2007.

16. B. Duhoux, K. Mens, and B. Dumas. Implementation of a feature-based context-
oriented programming language. In Proceedings of the Workshop on Context-
oriented Programming, pages 9–16, 2019.

17. M. Dwyer, M. Avrunin, and M. Corbett. Patterns in property specifications for
finite-state verification. In ICSE, pages 411–420, 1999.

18. R. Filman, T. Elrad, S. Clarke, and M. Akşit. Aspect-oriented software develop-
ment. Addison-Wesley Professional, 2004.

19. O. Friedmann and M. Lange. Solving parity games in practice. In International
Symposium on Automated Technology for Verification and Analysis, pages 182–196.
Springer, 2009.

20. M. Jurdziński. Small progress measures for solving parity games. In Annual Sym-
posium on Theoretical Aspects of Computer Science, pages 290–301. Springer, 2000.

21. S. Katz. Aspect categories and classes of temporal properties. In Transactions on
aspect-oriented software development I, pages 106–134. Springer, 2006.



Exploiting Anti-Scenarios 15

22. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and
J. Irwin. Aspect-oriented programming. In European conference on object-oriented
programming, pages 220–242. Springer, 1997.

23. R. Könighofer, G. Hofferek, and R. Bloem. Debugging formal specifications using
simple counterstrategies. In 2009 Formal Methods in Computer-Aided Design, pages
152–159. IEEE, 2009.

24. J. Krüger. Separation of concerns: experiences of the crowd. In ACM Symposium
on Applied Computing, pages 2076–2077. ACM, 2018.

25. F. M. Maggi, M. Westergaard, M. Montali, and W. M. van der Aalst. Runtime
verification of ltl-based declarative process models. In International Conference on
Runtime Verification, pages 131–146. Springer, 2011.

26. S. Malakuti and M. Aksit. Event-based modularization: how emergent behavioral
patterns must be modularized? FOAL, pages 7–12, 2014.

27. S. Maoz and J. O. Ringert. Synthesizing a lego forklift controller in gr (1): A case
study. arXiv preprint arXiv:1602.01172, 2016.

28. S. Maoz and Y. Sa’ar. Aspectltl: an aspect language for ltl specifications. In AOSD,
pages 19–30. ACM, 2011.

29. M. Mezini and K. Ostermann. Variability management with feature-oriented pro-
gramming and aspects. In ACM SEN, volume 29, pages 127–136. ACM, 2004.

30. S. Sandra I. Casas, J. J. Baltasar Garćıa Perez-Schofield, and C. Claudia A. Marcos.
MEDIATOR: an AOP Tool to Support Conflicts among Aspects. International
Journal of Software Engineering and Its Applications (IJSEIA), 3(3):33–44, 2009.

31. S. Schewe. Solving parity games in big steps. In International Conference on
Foundations of Software Technology and Theoretical Computer Science, pages 449–
460. Springer, 2007.

32. Y. Tahara, A. Ohsuga, and S. Honiden. Formal verification of dynamic evolution
processes of uml models using aspects. In Proceedings of the 12th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems, pages
152–162. IEEE Press, 2017.

33. T. Tourwé, J. Brichau, and K. Gybels. On the existence of the aosd-evolution
paradox. SPLAT, 2003.

34. Y.-K. Tsay, Y.-F. Chen, M.-H. Tsai, K.-N. Wu, and W.-C. Chan. Goal: A graphical
tool for manipulating büchi automata and temporal formulae. In TACAS, pages
466–471. Springer, 2007.

35. N. Ubayashi and T. Tamai. Aspect-oriented programming with model checking.
In Proceedings of the 1st international conference on Aspect-oriented software de-
velopment, pages 148–154. ACM, 2002.

36. S. Velan. Introducing artificial intelligence agents to the empirical measurement
of design properties for aspect oriented software development. In 2019 Amity Inter-
national Conference on Artificial Intelligence (AICAI), pages 80–85. IEEE, 2019.

37. W. Zielonka. Infinite games on finitely coloured graphs with applications to au-
tomata on infinite trees. Theoretical Computer Science, 200(1-2):135–183, 1998.


