

Expressing Early Behavior Specifications with Branching Visual Scenarios

Fernando Asteasuain
1,2

, Federico Calonge
1
, Federico D’Angiolo

1
, Federico Diaz

1
, Pablo Gamboa

2

{fasteasuain,fcalonge,fediaz,fdangiolo}@undav.edu.ar, pablodaniel.gamboa@alumnos.uai.edu.ar
1
Universidad Nacional de Avellaneda, España 350, Avellaneda, BsAs.

2
UAI-CAETI

Abstract

Branching logics enable the software engineer to

express interesting type of properties and feature more

efficient algorithms for model checking than linear

logics. In this work we present an extension of the FVS

language (based on a linear representation of systems’

execution) in order to contemplate branching properties.

The formal semantics of this extension, named Branching

FVS, is also introduced in this work. As a case of study

we model the behavior of a FLASH memory test chip, a

classical hardware verification example. This is a

particular domain where branching logics are heavily

used to specify the expected behavior of systems.

1. Introduction

Early specification of behavior has been pinpointed by

the community as one of the main problems to be

addressed to consolidate the transference of software

formal validation and verification techniques such as

model checking [5] from the academic to the industrial

world [11, 10]. In this context, the specification language

chosen to describe the expected behavior of the system is

a key factor. Most of the approaches rely on temporal

logics as the formalism used to specify behavior.

However, usability and expressivity of temporal logics

have been challenged by several approaches. A plethora

of extensions have been proposed [1-4] in order to

provide more expressive or more user friendly

formalisms. Among them, FVS [4-5] results in an

attractive option. FVS is a declarative language based on

graphical scenarios and features a flexible and expressive

notation with clear and solid language semantics. FVS

expressivity is a distinguished characteristic among

declarative approaches since it is able to denote �-

regular properties, being for example, more expressive

than LTL (Linear Temporal Logic) [4]. In [5] all the

specification patterns [6] were modeled in FVS, and their

specification was compared against other notations. The

results showed that FVS specification turn out to be more

succinct and easier to manipulate and validate.

Furthermore, a tool named GTxFVS was developed

giving support to all FVS's features [7]. However, FVS

only contemplates linear specifications leaving out the

possibility to denote branching properties. Branching

flavored specifications represents an important way of

reasoning when dealing with early behavior of systems.

As explained in [8] one of the major aspects of all

temporal languages is their underlying model of time. In

linear temporal logics, time is treated as if each moment

in time has a unique possible future. Thus, linear

temporal logic formulas are interpreted over linear

sequences and we regard them as describing a behavior

of a single computation of a program. In branching

temporal logics, each moment in time may split into

various possible futures. Accordingly, the structures over

which branching temporal logic formulas are interpreted

can be viewed as infinite computation trees, each

describing the behavior of the possible computations of a

nondeterministic program. In the linear temporal logic

LTL, formulas are composed from the set of atomic

propositions using the usual Boolean connectives as well

as the temporal connective G (“always”), F

(“eventually”), X (“next”), and U (“until”). These

temporal connectives can be seen as state quantifiers. The

branching temporal CTL augments LTL by the path

quantifiers E (“there exists a computation”) and A (“for

all computations”). So, in CTL every temporal

connective is preceded by a path quantifier [8].

Although in terms of expressiveness linear and

branching temporal logics are not comparable (there are

properties specified in LTL that cannot be expressed in

CTL and vice versa) [8] specific aspects in where one of

the two outlines the other one can be stated. Most of the

specifications and formal validations in domains such as

hardware design are done through the use of branching

logics [3, 8-10]. In addition, branching logics result in

more efficient model checking given the complexity of

the algorithms involved. Suppose we are given a

transition system of size n and a temporal logic formula

of size m. For the branching temporal logic CTL, model-

checking algorithms run in time O(nm) [12], while, for

the linear temporal logic LTL, model-checking

algorithms run in time n2
O(m

) [11]. Since LTL model

Expressing Early Behavior Specifications with Branching Visual Scenarios

Fernando Asteasuain
1,2

, Federico Calonge
1
, Federico D’Angiolo

1
, Federico Diaz

1
, Pablo Gamboa

2

{fasteasuain,fcalonge,fediaz,fdangiolo}@undav.edu.ar, pablodaniel.gamboa@alumnos.uai.edu.ar
1
Universidad Nacional de Avellaneda, España 350, Avellaneda, BsAs.

2
UAI-CAETI

Abstract

Branching logics enable the software engineer to

express interesting type of properties and feature more

efficient algorithms for model checking than linear

logics. In this work we present an extension of the FVS

language (based on a linear representation of systems’

execution) in order to contemplate branching properties.

The formal semantics of this extension, named Branching

FVS, is also introduced in this work. As a case of study

we model the behavior of a FLASH memory test chip, a

classical hardware verification example. This is a

particular domain where branching logics are heavily ll

used to specify the expected behavior of systems.

1. Introduction

Early specification of behavior has been pinpointed by

the community as one of the main problems to be

addressed to consolidate the transference of software

formal validation and verification techniques such as

model checking [5] from the academic to the industrial

world [11, 10]. In this context, the specification language

chosen to describe the expected behavior of the system is

a key factor. Most of the approaches rely on temporal

logics as the formalism used to specify behavior.

However, usability and expressivity of temporal logics

have been challenged by several approaches. A plethora

of extensions have been proposed [1-4] in order to

provide more expressive or more user friendly

formalisms. Among them, FVS [4-5] results in an

attractive option. FVS is a declarative language based on

graphical scenarios and features a flexible and expressive

notation with clear and solid language semantics. FVS

expressivity is a distinguished characteristic among

declarative approaches since it is able to denote �-

regular properties, being for example, more expressive

than LTL (Linear Temporal Logic) [4]. In [5] all the

specification patterns [6] were modeled in FVS, and their

specification was compared against other notations. The

results showed that FVS specification turn out to be more

succinct and easier to manipulate and validate.

Furthermore, a tool named GTxFVS was developed

giving support to all FVS's features [7]. However, FVS

only contemplates linear specifications leaving out the t

possibility to denote branching properties. Branching

flavored specifications represents an important way of

reasoning when dealing with early behavior of systems.

As explained in [8] one of the major aspects of all

temporal languages is their underlying model of time. In

linear temporal logics, time is treated as if each moment

in time has a unique possible future. Thus, linear

temporal logic formulas are interpreted over linear

sequences and we regard them as describing a behavior

of a single computation of a program. In branching

temporal logics, each moment in time may split into

various possible futures. Accordingly, the structures over

which branching temporal logic formulas are interpreted

can be viewed as infinite computation trees, each

describing the behavior of the possible computations of a

nondeterministic program. In the linear temporal logic

LTL, formulas are composed from the set of atomic

propositions using the usual Boolean connectives as well

as the temporal connective G (“always”), F

(“eventually”), X (“next”), and U (“until”). These

temporal connectives can be seen as state quantifiers. The

branching temporal CTL augments LTL by the path

quantifiers E (“there exists a computation”) and A (“for

all computations”). So, in CTL every temporal

connective is preceded by a path quantifier [8].

Although in terms of expressiveness linear and

branching temporal logics are not comparable (there are

properties specified in LTL that cannot be expressed in

CTL and vice versa) [8] specific aspects in where one of

the two outlines the other one can be stated. Most of the

specifications and formal validations in domains such as

hardware design are done through the use of branching

logics [3, 8-10]. In addition, branching logics result in

more efficient model checking given the complexity of

the algorithms involved. Suppose we are given a

transition system of size n and a temporal logic formula

of size m. For the branching temporal logic CTL, model-

checking algorithms run in time O(nm) [12], while, for

the linear temporal logic LTL, model-checking

algorithms run in time n2
O(m

) [11]. Since LTL model

Página 1107

checking is PSPACE-complete [13], the latter bound

probably cannot be improved [8].

Given this context in this work we present an

extension of FVS named Branching FVS based on

branching temporal logics. A new branching semantic of

the language is introduced and Branching FVS

specifications are given in the hardware design world

modeling the behavior of a FLASH memory test chip, an

example taken from the literature [3].

The rest of the paper is structured as follows. Section

2 describes Branching FVS main features whereas

Section 3 introduces the formal semantics of the

language. Section 4 analyzes the case of study and

Section 5 presents the conclusions of the work. Finally,

Section 6 mentions Future Work and Section 7 discusses

Related Work.

2. Branching FVS Main Features

In this section we will informally describe the

standing features of Branching FVS, a simple branching

extension of the FVS language [4-5]. The reader is

referred to the next section for a formal characterization

of the language. FVS is a graphical language based on

scenarios. Scenarios are partial order of events,

consisting of points, which are labeled with a logic

formula expressing the possible events occurring at that

point, and arrows connecting them. An arrow between

two points indicates precedence of the source with

respect to the destination: for instance, in Figure 1-a A-

event precedes B-event. We use an abbreviation for a

frequent sub-pattern: a certain point represents the next

occurrence of an event after another. The abbreviation is

a second (open) arrow near the destination point. For

example, in Figure 1-b the scenario captures the very

next B-event following an A-event, and not any other B-

event. Conversely, to represent the previous occurrence

of a (source) event, there is a symmetrical notation: an

open arrow near the source extreme. For example, in

Figure 1-c the scenario captures the immediate previous

occurrence of a B-event from the occurrence of the A-

event, and not any other B-event. Events labeling an

arrow are interpreted as forbidden events between both

points. In Figure 1-d A-event precedes B-event such that

C-event does not occur between them. FVS features

aliasing between points. Scenario in 1-e indicates that a

point labeled with A is also labeled with A ^ B. It is

worth noticing that A-event is repeated on the labeling of

the second point just because of �-FVS formal syntaxes

[15]. Finally, two special points are introduced as

delimiters to denote the beginning and the end of an

execution. These are shown in Figure 1-f.

A B A B
Not (C)

(a) Precedence (d) Forbidden Behavior

A B

(b) Next

A B

(c) Previous

A A and B

(e) Aliasing (f) Delimiters

Beginning of execution

Ending of Execution

Figure 1. Basic Elements in Branching FVS

We now introduce the concept of FVS rules, a core

concept in the language. Roughly speaking, a rule is

divided into two parts: a scenario playing the role of an

antecedent and at least one scenario playing the role of a

consequent. In Branching FVS two types of rules can be

defined: rules defining behavior with an existential path

quantifier (FVS-E rules) and rules defining behavior with

a for all path quantifier (FVS-A) rules. For the FVS-E

rules the intuition is that if at least one time the trace

“matches" a given antecedent scenario, then it must also

match at least one of the consequents. For the FVS-A

rules the intuition is that every time the trace “matches"

a given antecedent scenario, then it must also match at

least one of the consequents. In both cases, rules take the

form of an implication: an antecedent scenario and one or

more consequent scenarios. Graphically, the antecedent

is shown in black, and consequents in grey. Since a rule

can feature more than one consequent, elements which do

not belong to the antecedent scenario are numbered to

identify the consequent they belong to. In addition, FVS-

E rules are denoted with a letter E whereas FVS-A rules

are denoted with a letter A, in order to distinguish both

types of rules.

Two examples are shown in Figure 2 modeling the

behavior of a client-server system with FVS-A rules.

That is, these properties must be satisfied for all possible

computations. The rule in the top of Figure 2 establishes

that every request received by a server must be answered,

either accepting the request (consequent 1) or denying it

(consequent 2). The rule at the bottom of Figure 2

dictates that every granted request must be logged due to

auditing requirements.

checking is PSPACE-complete [13], the latter bound

probably cannot be improved [8].

Given this context in this work we present an

extension of FVS named Branching FVS based on

branching temporal logics. A new branching semantic of

the language is introduced and Branching FVS

specifications are given in the hardware design world

modeling the behavior of a FLASH memory test chip, an

example taken from the literature [3].

The rest of the paper is structured as follows. Section

2 describes Branching FVS main features whereas

Section 3 introduces the formal semantics of the

language. Section 4 analyzes the case of study and

Section 5 presents the conclusions of the work. Finally,

Section 6 mentions Future Work and Section 7 discusses

Related Work.

2. Branching FVS Main Features

In this section we will informally describe the

standing features of Branching FVS, a simple branching

extension of the FVS language [4-5]. The reader is

referred to the next section for a formal characterization

of the language. FVS is a graphical language based on

scenarios. Scenarios are partial order of events,

consisting of points, which are labeled with a logic

formula expressing the possible events occurring at that t

point, and arrows connecting them. An arrow between

two points indicates precedence of the source with

respect to the destination: for instance, in Figure 1-a A-

event precedes B-event. We use an abbreviation for a

frequent sub-pattern: a certain point represents the next

occurrence of an event after another. The abbreviation is

a second (open) arrow near the destination point. For

example, in Figure 1-b the scenario captures the very

next B-event following an A-event, and not any other B-

event. Conversely, to represent the previous occurrence

of a (source) event, there is a symmetrical notation: an

open arrow near the source extreme. For example, in

Figure 1-c the scenario captures the immediate previous

occurrence of a B-event from the occurrence of the A-

event, and not any other B-event. Events labeling an

arrow are interpreted as forbidden events between both

points. In Figure 1-d A-event precedes B-event such that

C-event does not occur between them. FVS features

aliasing between points. Scenario in 1-e indicates that a

point labeled with A is also labeled with A ^ B. It is t

worth noticing that A-event is repeated on the labeling of

the second point just because of �-FVS formal syntaxes

[15]. Finally, two special points are introduced as

delimiters to denote the beginning and the end of an

execution. These are shown in Figure 1-f.

A B A B
Not (C)

(a) Precedence (d) Forbidden Behavior

A B

(b) Next

A B

(c) Previous

A A and B

(e) Aliasing (f) Delimiters

Beginning of execution

Ending of Execution

Figure 1. Basic Elements in Branching FVS

We now introduce the concept of FVS rules, a core

concept in the language. Roughly speaking, a rule is

divided into two parts: a scenario playing the role of an

antecedent and at least one scenario playing the role of a

consequent. In Branching FVS two types of rules can be

defined: rules defining behavior with an existential path

quantifier (FVS-E rules) and rules defining behavior with

a for all path quantifier (FVS-A) rules. For the FVS-E

rules the intuition is that if at least one time the trace

“matches" a given antecedent scenario, then it must also t

match at least one of the consequents. For the FVS-A

rules the intuition is that every time the trace “matches"

a given antecedent scenario, then it must also match at

least one of the consequents. In both cases, rules take the

form of an implication: an antecedent scenario and one or

more consequent scenarios. Graphically, the antecedent

is shown in black, and consequents in grey. Since a rule

can feature more than one consequent, elements which do

not belong to the antecedent scenario are numbered to

identify the consequent they belong to. In addition, FVS-

E rules are denoted with a letter E whereas FVS-A rules

are denoted with a letter A, in order to distinguish both

types of rules.

Two examples are shown in Figure 2 modeling the

behavior of a client-server system with FVS-A rules.

That is, these properties must be satisfied for all possible

computations. The rule in the top of Figure 2 establishes

that every request received by a server must be answered,

either accepting the request (consequent 1) or denying it

(consequent 2). The rule at the bottom of Figure 2

dictates that every granted request must be logged due to

auditing requirements.

Página 1108

Request-Received

Request-Granted
1

Request-Denied
2

Request-Granted Request-Loggued
1

1

Figure 2. FVS-A rules’ examples with a For All Path

Quantifier

 An additional requirement for the server-client

system is added next featuring an existential path

quantifier. The requirement is the following: It is possible

to get to a state where started holds, but ready does not

hold, where started and ready denote two possible states

of the system. The CTL formula modeling this behavior

is the following one: EF (started � ¬ready), where E

stands for the existential path quantifier and F stands for

the future operator. Figure 3 shows a Branching FVS

specification for this requirement through an FVS-E rule.

The rule demands that at least one time since the

beginning of the trace both events started and ¬ ready

must hold simultaneously.

started and ¬ ready
1

1

Figure 3. FVS-E rule example with an Existential Path

Quantifier

3. Branching FVS Semantics

The semantics of Branching FVS is based on the

formal definition of the FVS language detailed in [4,5].

In few words, morphisms between scenarios are defined

in order to establish when a certain trace of the system

satisfies a given rule. Then, the semantics of a system in

FVS is given by the set of traces that satisfies all the

specified rules modeling the behavior of the system.

Based on these concepts and following the two types of

path quantifiers introduced in CTL semantics of

Branching FVS is tackled providing definitions of

scenarios, morphims, rules and satisfiability for the path

quantifier E and also for the path quantifier A. Finally,

the semantics of a system in Branching FVS is denoted

by those traces satisfying both types of rules. Section 3.1

introduces the semantics for path quantifier E, Section

3.2 introduces the semantics for path quantifier A

whereas Section 3.3 exhibits the semantics of Branching

FVS combining both type of rules.

3.1. Branching FVS: Existential Path Quantifier

An FVS scenario is described by the following

definition.

Definition 1. (FVS-E) An FVS scenario for the path

quantifier E or simply an FVS-E scenario is a tuple ��, P,

l, ≡, ≠, <, ∂� where:

• � is a finite set of propositional variables

standing for types of events;

• P is a finite set of points;

• l : P →PL(�) is a function that labels each point

with a given formula precisely and PL is the set

of propositional formulas that can be obtained

from the alphabet � ;

• ≡ ⊆ P x P is an equivalence relation;

• ≠ ⊆ P x P is an asymmetric relation among

points;

• < ⊆ P ⊕ {0} x P ⊕ {�} \{�0, ��} is a

precedence relation between points, where 0 and

� represent the beginning and the end of

execution, respectively;

• ∂: (≠ ∪ <) → PL(�) assigns to each pair of

points, related by precedence or separation, a

formula which constrains the set of events

occurrences that may occur between the pair.

We now formally define morphisms between

scenarios. Intuitively, we would like to obtain a matching

between scenarios, i.e., a mapping between their points

exhibiting how a scenario “specializes" another one.

Definition 2 (FVS-E Morphism) Given two FVS-E

scenarios S1, S2 (assuming a common universe of event

propositions), and f a total function between P1 and P2 we

say that f is a morphism from S1 to S2 (denoted f: S1 →

S2) if and only if:

• l2(a)) �11(p) is a tautology for all p ∈ P1

and all a ∈ 2 P2 such that a ≡2 f(p);

• ∂2(f(p),f(q)) � ∂1 (p; q) is a tautology for all

p; q ∈ P1;

• if p ≡1 q then f(p) ≡2 f(q) for all p; q ∈ P1;

• if p ≠1 q then f(p) ≠2 f(q) for all p; q ∈ P1;

• if p <1 q then f(p) <2 f(q) for all p; q ∈ P1.

We now formally define FVS-E rules as a rule

scenario playing the role of the antecedent, one or more

consequents scenarios and finally, morphisms from the

antecedent to the consequents. More formally:

Request-Received

Request-Granted
1

Request-Denied
2

Request-Granted Request-Loggued
1

1

Figure 2. FVS-A rules’ examples with a For All Path
Quantifier

An additional requirement for the server-client

system is added next featuring an existential path

quantifier. The requirement is the following: It is possible

to get to a state where started holds, but d ready does not

hold, where started and ready denote two possible states d

of the system. The CTL formula modeling this behavior

is the following one: EF (started � ¬ready)� , where E

stands for the existential path quantifier and F stands for F

the future operator. Figure 3 shows a Branching FVS

specification for this requirement through an FVS-E rule.

The rule demands that at least one time since the

beginning of the trace both events started and d ¬ ready

must hold simultaneously.

started and ¬ ready
1

1

Figure 3. FVS-E rule example with an Existential Path
Quantifier

3. Branching FVS Semantics

The semantics of Branching FVS is based on the

formal definition of the FVS language detailed in [4,5].

In few words, morphisms between scenarios are defined

in order to establish when a certain trace of the system

satisfies a given rule. Then, the semantics of a system in

FVS is given by the set of traces that satisfies all the

specified rules modeling the behavior of the system.

Based on these concepts and following the two types of

path quantifiers introduced in CTL semantics of

Branching FVS is tackled providing definitions of

scenarios, morphims, rules and satisfiability for the path

quantifier E and also for the path quantifier A. Finally,

the semantics of a system in Branching FVS is denoted

by those traces satisfying both types of rules. Section 3.1

introduces the semantics for path quantifier E, Section

3.2 introduces the semantics for path quantifier A

whereas Section 3.3 exhibits the semantics of Branching

FVS combining both type of rules.

3.1. Branching FVS: Existential Path Quantifier

An FVS scenario is described by the following

definition.

Definition 1. (FVS-E) An FVS scenario for the path

quantifier E or simply an FVS-E scenario is a tuple ��, P,

l, ≡, ≠, <, ∂� where:

• � is a finite set of propositional variables

standing for types of events;

• P is a finite set of points;

• l : P l →PL(�) is a function that labels each point

with a given formula precisely and PL is the set PL

of propositional formulas that can be obtained

from the alphabet � ;

• ≡ ⊆ P x P is an equivalence relation;

• ≠ ⊆ P x P is an asymmetric relation among

points;

• < ⊆ P ⊕ {0} x P ⊕ {�} \{�0, ��} is a

precedence relation between points, where 0 and

� represent the beginning and the end of

execution, respectively;

• ∂: (≠ ∪ <) → PL(�) assigns to each pair of

points, related by precedence or separation, a

formula which constrains the set of events

occurrences that may occur between the pair.

We now formally define morphisms between

scenarios. Intuitively, we would like to obtain a matching

between scenarios, i.e., a mapping between their points

exhibiting how a scenario “specializes" another one.

Definition 2 (FVS-E Morphism) Given two FVS-E

scenarios S1, S2 (assuming a common universe of event

propositions), and f a total function between P1 and P2 we

say that f is a morphism from S1 to S2 (denoted f: S1 →
S2) if and only if:

• l2(a)) �11(p(() is a tautology for all p ∈ P1

and all a ∈ 2 P2 such that a ≡2 f(p);

• ∂2(f(p),f(q)) ((� ∂1∂ (p; q) is a tautology for all

p; q ∈ P1;

• if p ≡1≡ q then f(p) ≡2≡≡ f(q) for all p; q ∈ P1;

• if p if ≠1≠ q then f(p) ≠2≠ f(q) for all p; q ∈ P1;

• if p <1 q then f(p) <2 f(q) for all p; q ∈ P1.

We now formally define FVS-E rules as a rule

scenario playing the role of the antecedent, one or more

consequents scenarios and finally, morphisms from the

antecedent to the consequents. More formally:

Página 1109

Definition 3 (FVS-E Rule) Given a scenario S0

(antecedent) and an indexed set of scenarios and

morphisms from the antecedent f1 : S0 → S1; f2 : S0 →

S2; …; fk : S0 → Sk (consequents), we call R � S0, {fi:

Si}i=1…k � an FVS-E Rule.

Finally, we can state when a trace satisfies a given

rule. Intuitively, the rule will be satisfied if at least one

time the antecedent is “matched” at least one of the

consequents is matched. Since an existential path

quantifier is being defined, it is enough to check if the

rule is satisfied at least one time, and not every time. This

is why the definition requires consequent(s) to be

matched if some morphism (and not all of them) from the

antecedent to the scenario is found.

Definition 4 (FVS-E rules’ semantics) A scenario S

satisfies an FVS-E rule R (S � R) iff for some morphism

m: S0 → S there exists mi: Si → S, for some i ∈ {1..k}

such that m = mi o fi.

3.2. Branching FVS: For All Path Quantifier

For the path quantifier A (“for all computations”) FVS

semantics is given as follows. The exact same definitions

for scenarios, morphisms and rules that were introduced

for the path quantifier E (“there exists a computation”)

apply for this quantifier. So, FVS-A scenarios, FVS-A

morphisms and FVS-A rules are trivially defined. The

only difference is given in the rules’ semantics

definition. For the path quantifier E the rule is satisfied if

at least one time the antecedent is “matched” at least one

of the consequents is matched. However, for the path

quantifier A every time the antecedent is matched at

least one of the consequents must be matched. The

formal definition establishing the rule satisfiability for

the path quantifier A in Branching FVS is given next.

Definition 5 (FVS-A rules’ semantics) A scenario S

satisfies an FVS-A rule R (S � R) iff for every

morphism m: S0 → S there exists mi: Si → S, for some

i ∈ {1..k} such that m = mi o fi.

Note that the only difference between this definition

(Definition 5) and the previous one (Definition 4) is the

amount of morphisms needed to be satisfied (at least one

for the path quantifier E and all of them for the path

quantifier A).

3.3. Branching FVS Semantics

Now that the semantics for both kinds of path

quantifiers are defined we can establish the formal

semantics of the system based on the definitions 4 and 5:

The semantic of the system is given by those traces

satisfying the set of FVS-A and FVS-E rules. More

formally:

Definition 6 (Branching FVS Semantics) The

semantics of a system S specified in Branching FVS is

given by the set of traces T such that T � ER ∧ T � AR

where ER denotes the set of all the FVS-E rules and AR

the set of all the FVS-A rules.

4. Case Study

Our case of study is based on one example introduced

in [3]. In few words, the subject of the case study is the

“Tricky” technology FLASH memory test chip in 0.13�s

process developed in ST Microelectronics. In particular,

imitating the methodology introduced in [3] we focused

on modeling some requirements for its external interface.

The memory cell can be in one of the programming,

reading or erasing modes. The correct functioning of the

design at its analog level of abstraction in a given mode

is determined by the behavior of the following interface

signals: bl: the matrix bit line terminal; pw, the matrix p-

well terminal; wl, the matrix word line; s: the matrix

source terminal; vt the threshold voltage of cell and id,

the drain current of cell.

The specification in Branching FVS for the case of

study takes some considerations. Our language does not

feature timing constructors such as clocks variables or

other similar strategies. A typical way to introduce them

is to consider the instants when a signal changes its

value, since it can be interpreted as instantaneous events

[3]. To this end we propose events representing changes

on the signals such as: vt_threshold (the vt signal crosses

the threshold) or wl_below (the bl signal is below its

acceptable minimum). Given this context we modeled

four properties describing the correct behavior of the cell

in the programming mode and one property to detect the

start of the erasing mode.

The first property modeling the programming mode

requires that whenever the vt signal crosses its threshold,

both vt and id have to remain continuously steady until

the id signal falls below its threshold. Events

vt_threshold, vt_steady, id_steady and id_falls are

introduced to model this behavior in Branching FVS. The

vt_threshold event represent the moment the signal

crosses its threshold, steady and unstable events models

different states of the given signals and finally id_falls

represents the moment id signal falls below its threshold.

This requirement is modeled in the figure 4. Since this

property must be satisfied in all moments the for all path

Definition 3 (FVS-E Rule) Given a scenario S0

(antecedent) and an indexed set of scenarios and

morphisms from the antecedent f1 : S0 → S1; f2ff : S0 →

S2; …; fk f f : Sk 0 → Sk (consequents), we call R k � S0, {fi{f{f :

Si}i=1…k � an FVS-E Rule.

Finally, we can state when a trace satisfies a given

rule. Intuitively, the rule will be satisfied if at least one t

time the antecedent is “matched” at least one of the

consequents is matched. Since an existential path

quantifier is being defined, it is enough to check if the

rule is satisfied at least one time, and not every time. This

is why the definition requires consequent(s) to be

matched if some morphism (and not all of them) from the m

antecedent to the scenario is found.

Definition 4 (FVS-E rules’ semantics) A scenario S

satisfies an FVS-E rule R (S �R) iff for some morphism

m: S0 → S there exists mimm : Si → S, for some i ∈ {1..k}

such that m = mi o fi f f .

3.2. Branching FVS: For All Path Quantifier

For the path quantifier A (“for all computations”) FVS

semantics is given as follows. The exact same definitions

for scenarios, morphisms and rules that were introduced

for the path quantifier E (“there exists a computation”)

apply for this quantifier. So, FVS-A scenarios, FVS-A

morphisms and FVS-A rules are trivially defined. The

only difference is given in the rules’ semantics

definition. For the path quantifier E the rule is satisfied if

at least one time the antecedent is “matched” at least one

of the consequents is matched. However, for the path

quantifier A every time the antecedent is matched at

least one of the consequents must be matched. The

formal definition establishing the rule satisfiability for

the path quantifier A in Branching FVS is given next.

Definition 5 (FVS-A rules’ semantics) A scenario S

satisfies an FVS-A rule R (S � R) iff for every

morphism m: S0 → S there exists mi: Si → S, for some

i ∈ {1..k} such that m = mi o fi f f .

Note that the only difference between this definition

(Definition 5) and the previous one (Definition 4) is the

amount of morphisms needed to be satisfied (at least one

for the path quantifier E and all of them for the path

quantifier A).

3.3. Branching FVS Semantics

Now that the semantics for both kinds of path

quantifiers are defined we can establish the formal

semantics of the system based on the definitions 4 and 5:

The semantic of the system is given by those traces

satisfying the set of FVS-A and FVS-E rules. More

formally:

Definition 6 (Branching FVS Semantics) The

semantics of a system S specified in Branching FVS is S

given by the set of traces T such that T T � ER ∧ T � AR

where ER denotes the set of all the FVS-E rules and AR

the set of all the FVS-A rules.

4. Case Study

Our case of study is based on one example introduced

in [3]. In few words, the subject of the case study is the

“Tricky” technology FLASH memory test chip in 0.13�s

process developed in ST Microelectronics. In particular,

imitating the methodology introduced in [3] we focused

on modeling some requirements for its external interface.

The memory cell can be in one of the programming,

reading or erasing modes. The correct functioning of the

design at its analog level of abstraction in a given mode

is determined by the behavior of the following interface

signals: bl: the matrix bit line terminal; pw, the matrix p-

well terminal; wl, the matrix word line; s: the matrix

source terminal; vt the threshold voltage of cell and id,

the drain current of cell.

The specification in Branching FVS for the case of

study takes some considerations. Our language does not

feature timing constructors such as clocks variables or

other similar strategies. A typical way to introduce them

is to consider the instants when a signal changes its

value, since it can be interpreted as instantaneous events

[3]. To this end we propose events representing changes

on the signals such as: vt_threshold (the vt signal crosses vt

the threshold) or wl_below (the bl signal is below its bl

acceptable minimum). Given this context we modeled

four properties describing the correct behavior of the cell

in the programming mode and one property to detect the

start of the erasing mode.

The first property modeling the programming mode

requires that whenever the vt signal crosses its threshold, vt

both vt and vt id have to remain continuously steady until id

the id signal falls below its threshold. Events id

vt_threshold, vt_steady, id_steady and id_falls are

introduced to model this behavior in Branching FVS. The

vt_threshold event represent the moment the signal

crosses its threshold, steady and unstable events models

different states of the given signals and finally id_falls

represents the moment id signal falls below its threshold. id

This requirement is modeled in the figure 4. Since this

property must be satisfied in all moments the for all path

Página 1110

quantifier is used. Every time the vt_threshold event

occurs followed by the id_falls event then id and vt

steady events must occur in the middle, and they should

remain in that state until id_falls event occurs (this is

modeled by requiring the absence of the events

id_unstable and vt_unstable).

vt_threshold id_falls

vt_steady
1

id_steady
1

Figure 4. An FVS-A rule for the first property of interest.

The second property requires that whenever the

wordline wl is below its threshold (represented by the

event wl_below) but there exists a moment in the future

where wl will jump to above its threshold (wl_up event)

and the cell is not in the programming mode (represented

by the ProgMode event) then the bitline signal bl should

cross its threshold (represented by the bl_up event)

before the end of the simulation. Figure 5 shows an FVS-

E rule modeling this behavior using the mentioned

events. The bl_up event (the consequent scenario) must

occur when the conditions required by the antecedent

scenario are matched.

wl_below wl_up
Not (ProgMode)

bl_up
1

Figure 5. An FVS-E rule for the Programming Mode.

The third property specifies that whenever the

programming procedure starts, the bitline signal bt

should not fall below its threshold until the signal vt

becomes up a certain value and the absolute value of the

source current id goes below its threshold. The following

events are introduced to shape this requirement:

ProgMode, bt_down, vt_up and id_below as shown in the

FVS-A rule in figure 6.

ProgMode vt_up and id_below
1Not (bt_down)

Figure 6. An FVS-A rule for the Programming Mode.

Finally, we modeled a fourth property describing the

expected behavior of the programming mode. This

property requires that whenever the bitline bl and

wordline wl signals are above their thresholds, the p-well

signal pw has to be below its threshold. The required

events for this property are: bl_up, wl_up and pw_below.

Figure 7 shows the FVS-A rule for this requirement. In

this rule the consequent demands that every time events

bl_up and wl_up occur the pw_below should also

simultaneously occur.

bl_up and wl_up bl_up and wl_up and pw_below
1

Figure 7. The fourth rule for the Programming Mode.

 Regarding the erasing mode, we introduce one

property which aims to detect when the erasing mode

should begin (represented by the ErasingMode event).

According to the specification detailed in [3] this occurs

if there exists a computation where wordline signal wl is

lower than a certain value (represented by the wl_down

event) and p-well pw is above its threshold (represented

by the pw_up event). Figure 8 shows the existential FVS

rule modeling this property.

wl_down and pw_up wl_down and pw_up and ErasingMode

1

Figure 8. An FVS-E rule detecting the Erasing Mode

Summing up, we showed a Branching FVS

specification modeling the behavior of a FLASH memory

test chip. Four rules were introduced shaping the

behavior in the programming mode plus one additional

rule to detect the beginning of the erasing mode. Three

rules were expressed with the path quantifier A and two

with the path quantifier E.

5. Conclusions

In this work we present an extension of the FVS

language named Branching FVS which aims to cope with

properties expressed in branching temporal logic.

Branching logics enable the software engineer to express

interesting properties and it is heavily used for hardware

design and formal validation, besides being more

efficient in terms of execution time when used as input

into model checkers than linear temporal logics.

Branching FVS features two different types of rules:

rules preceded with a universal path quantifier and rules

preceded with an existential path quantifier. Branching

FVS was shown in action modeling a case of study in the

quantifier is used. Every time the vt_threshold event

occurs followed by the id_falls event then id and id vt

steady events must occur in the middle, and they should

remain in that state until id_falls event occurs (this is

modeled by requiring the absence of the events

id_unstable and vt_unstable).

vt_threshold id_falls

vt_steady
1

id_steady
1

Figure 4. An FVS-A rule for the first property of interest.

The second property requires that whenever the

wordline wl is below its threshold (represented by the wl

event wl_below) but there exists a moment in the future

where wl will jump to above its threshold (wl wl_up event)

and the cell is not in the programming mode (represented

by the ProgMode event) then the bitline signal bl should bl

cross its threshold (represented by the bl_up event)

before the end of the simulation. Figure 5 shows an FVS-

E rule modeling this behavior using the mentioned

events. The bl_up event (the consequent scenario) must

occur when the conditions required by the antecedent

scenario are matched.

wl_below wl_up
Not (ProgMode)

bl_up
1

Figure 5. An FVS-E rule for the Programming Mode.

The third property specifies that whenever the

programming procedure starts, the bitline signal bt

should not fall below its threshold until the signal vt

becomes up a certain value and the absolute value of the

source current id goes below its threshold. The following

events are introduced to shape this requirement:

ProgMode, bt_down, vt_up and id_below as shown in the

FVS-A rule in figure 6.

ProgMode vt_up and id_below
1)Not (bt_down)

Figure 6. An FVS-A rule for the Programming Mode.

Finally, we modeled a fourth property describing the

expected behavior of the programming mode. This

property requires that whenever the bitline bl and bl

wordline wl signals are above their thresholds, the p-well wl

signal pw has to be below its threshold. The required

events for this property are: bl_up, wl_up and pw_below.

Figure 7 shows the FVS-A rule for this requirement. In

this rule the consequent demands that every time events

bl_up and wl_up occur the pw_below should also

simultaneously occur.

bl_up and wl_up bl_up and wl_up and pw_below
1

Figure 7. The fourth rule for the Programming Mode.

 Regarding the erasing mode, we introduce one

property which aims to detect when the erasing mode

should begin (represented by the ErasingMode event).

According to the specification detailed in [3] this occurs

if there exists a computation where wordline signal wl is wl

lower than a certain value (represented by the wl_down

event) and p-well pw is above its threshold (represented

by the pw_up event). Figure 8 shows the existential FVS

rule modeling this property.

wl_down and pw_up wl_down and pw_up and ErasingMode
1

Figure 8. An FVS-E rule detecting the Erasing Mode

Summing up, we showed a Branching FVS

specification modeling the behavior of a FLASH memory

test chip. Four rules were introduced shaping the

behavior in the programming mode plus one additional

rule to detect the beginning of the erasing mode. Three

rules were expressed with the path quantifier A and two

with the path quantifier E.

5. Conclusions

In this work we present an extension of the FVS

language named Branching FVS which aims to cope with

properties expressed in branching temporal logic.

Branching logics enable the software engineer to express

interesting properties and it is heavily used for hardware

design and formal validation, besides being more

efficient in terms of execution time when used as input

into model checkers than linear temporal logics.

Branching FVS features two different types of rules:

rules preceded with a universal path quantifier and rules

preceded with an existential path quantifier. Branching

FVS was shown in action modeling a case of study in the

Página 1111

hardware design world. The formal semantics of the

language is also presented in this work. Although further

work is needed to consolidate our approach, we consider

this extension a solid first step for FVS in the branching

logic world.

6. Future Work

There are several lines of research which may

continue this work. First of all, we would like to use

Branching-FVS specifications as input to formal

validation tools like model checkers. In order to

accomplish this objective, we need to revisit the tableau

algorithm that translates FVS scenarios into Büchi

automata [4] so that Branching-FVS scenarios can be

translated too. We consider that this will be shortly

achieved since Branching-FVS is a simple extension of

FVS. This line of research also includes incorporating

Branching FVS features into our tool GTxFVS [7] which

currently holds FVS features only.

Secondly, we would like to compare Branching FVS

with other known notations such as Petri Nets or other

CTL extensions like [3,15] taking into account issues like

usability, flexibility and expressive power. We also

would like to continue exploring Branching-FVS in the

hardware verification domain considering case of studies

such as [16].

Finally, inspired in the work of [15] we would like to

explore Branching-FVS and formal verification in the

Artificial Intelligence domain.

7. Related Work

The language PSL [17-18] is widely used by chip

design and verification engineers across the hardware

verification community. Hardware properties can be

specified in PSL in order to verify the expected behavior.

The language originated as the Sugar language and later

evolved into an IEEE standard. It is heavily based on

temporal logics (LTL), augmented with regular

expressions. We share some objectives with PSL. In the

same spirit of our work, they acknowledge the need and

value of reviewing and validating properties

specification. However, this feature is achieved by

introducing tools build on the top of PSL [19-20]. So,

contrary to Branching-FVS, validation capabilities

require tool support and cannot be obtained directly from

PSL specifications.

On the top of SPL work in [3] introduces Signal

Temporal Logic (STL) specification language, and is

implemented in a stand-alone monitoring tool (AMT),

which constitutes a solid approach for hardware

verification purposes. Timed requirements can be

denoted in STL Logics since timed constructors are

available in the language. However, specifications in

STL resemble programming languages constructions

which may lead to premature operational decisions. In

this sense, graphical and declarative notations such as

Branching FVS might be closer to the way requirements

are expressed [21], which make easier the behavioral

exploration and specification of systems.

Real-time monitoring of the timed LTL (TLTL) logic

is studied in [9]. TLTL specifications are interpreted over

finite traces with the 3-valued semantics. The extensions

of temporal logics that deal with richer properties were

also considered in monitoring tools such as LOLA [10].

Other known realtime extensions of LTL are Temporal

logics MTL [23] and MITL [22]. Branching FVS is yet

only a specification language and needs further work in

order to incorporate Branching-FVS specifications into

validations tools such as model checkers [24-25].

Clearly, the road taken by these approaches from

specification languages to formal validation tools will

inspire our future work.

Work in [14] presents a technique based on Petri Nets

which focuses on the design and verification methods of

distributed logic controllers supervising real life

processes. We believe comparing usability, flexibility

and expressivity of Petri Nets, temporal logic and other

approaches like Branching FVS constitutes an appealing

line of research to address in the mid-term future.

Among branching logics extensions with formal

verification purposes in other domains it is worth

mentioning [15] and MCK [26]. They define some CTL

extensions focused in the Artificial Intelligence and multi

agent system domain. We share with these and other

similar approaches the need for more expressive

specification languages. In this sense, we believe that

there is an opportunity for Branching FVS in this domain

given its flexibility and expressive power.

8. Acknowledgements

This work was supported in part by a grant from

UNDAVCYT 2014 and UAI-CAETI founding.

9. References

[1] Bouajjani A, Lakhnech Y, Yovine S (1996) Model checking

for extended timed temporal logics. In: Formal techniques in

real-time and fault-tolerant systems. Springer,

Berlin,Heidelberg, pp 306–326

[2] Vardiy M, Wolperz P (1994) Reasoning about infinite

computations. Information & Computation, 115(1), 1-37.

[3] Maler, O., & Ni�kovi�, D. (2013). Monitoring properties of

analog and mixed-signal circuits. International Journal on

Software Tools for Technology Transfer, 15(3), 247-268.

[4] Asteasuain, F., & Braberman, V. (2017). Declaratively

building behavior by means of scenario clauses. Requirements

Engineering, 22(2), 239-274.

hardware design world. The formal semantics of the

language is also presented in this work. Although further

work is needed to consolidate our approach, we consider

this extension a solid first step for FVS in the branching

logic world.

6. Future Work

There are several lines of research which may

continue this work. First of all, we would like to use

Branching-FVS specifications as input to formal

validation tools like model checkers. In order to

accomplish this objective, we need to revisit the tableau

algorithm that translates FVS scenarios into Büchi

automata [4] so that Branching-FVS scenarios can be

translated too. We consider that this will be shortly

achieved since Branching-FVS is a simple extension of

FVS. This line of research also includes incorporating

Branching FVS features into our tool GTxFVS [7] which

currently holds FVS features only.

Secondly, we would like to compare Branching FVS

with other known notations such as Petri Nets or other

CTL extensions like [3,15] taking into account issues like

usability, flexibility and expressive power. We also

would like to continue exploring Branching-FVS in the

hardware verification domain considering case of studies

such as [16].

Finally, inspired in the work of [15] we would like to

explore Branching-FVS and formal verification in the

Artificial Intelligence domain.

7. Related Work

The language PSL [17-18] is widely used by chip

design and verification engineers across the hardware

verification community. Hardware properties can be

specified in PSL in order to verify the expected behavior.

The language originated as the Sugar language and later

evolved into an IEEE standard. It is heavily based on

temporal logics (LTL), augmented with regular

expressions. We share some objectives with PSL. In the

same spirit of our work, they acknowledge the need and

value of reviewing and validating properties

specification. However, this feature is achieved by

introducing tools build on the top of PSL [19-20]. So,

contrary to Branching-FVS, validation capabilities

require tool support and cannot be obtained directly from

PSL specifications.

On the top of SPL work in [3] introduces Signal

Temporal Logic (STL) specification language, and is

implemented in a stand-alone monitoring tool (AMT),

which constitutes a solid approach for hardware

verification purposes. Timed requirements can be

denoted in STL Logics since timed constructors are

available in the language. However, specifications in

STL resemble programming languages constructions

which may lead to premature operational decisions. In

this sense, graphical and declarative notations such as

Branching FVS might be closer to the way requirements

are expressed [21], which make easier the behavioral

exploration and specification of systems.

Real-time monitoring of the timed LTL (TLTL) logic

is studied in [9]. TLTL specifications are interpreted over

finite traces with the 3-valued semantics. The extensions

of temporal logics that deal with richer properties were

also considered in monitoring tools such as LOLA [10].

Other known realtime extensions of LTL are Temporal

logics MTL [23] and MITL [22]. Branching FVS is yet

only a specification language and needs further work in

order to incorporate Branching-FVS specifications into

validations tools such as model checkers [24-25].

Clearly, the road taken by these approaches from

specification languages to formal validation tools will

inspire our future work.

Work in [14] presents a technique based on Petri Nets

which focuses on the design and verification methods of

distributed logic controllers supervising real life

processes. We believe comparing usability, flexibility

and expressivity of Petri Nets, temporal logic and other

approaches like Branching FVS constitutes an appealing

line of research to address in the mid-term future.

Among branching logics extensions with formal

verification purposes in other domains it is worth

mentioning [15] and MCK [26]. They define some CTL

extensions focused in the Artificial Intelligence and multi

agent system domain. We share with these and other

similar approaches the need for more expressive

specification languages. In this sense, we believe that

there is an opportunity for Branching FVS in this domain

given its flexibility and expressive power.

8. Acknowledgements

This work was supported in part by a grant from

UNDAVCYT 2014 and UAI-CAETI founding.

9. References

[1] Bouajjani A, Lakhnech Y, Yovine S (1996) Model checking

for extended timed temporal logics. In: Formal techniques in

real-time and fault-tolerant systems. Springer,

Berlin,Heidelberg, pp 306–326

[2] Vardiy M, Wolperz P (1994) Reasoning about infinite

computations. Information & Computation, 115(1), 1-37.

[3] Maler, O., & Ni�kovi�, D. (2013). Monitoring properties of

analog and mixed-signal circuits. International Journal on

Software Tools for Technology Transfer, 15(3), 247-268.

[4] Asteasuain, F., & Braberman, V. (2017). Declaratively

building behavior by means of scenario clauses. Requirements

Engineering, 22(2), 239-274.

Página 1112

[5] Asteasuain, F., & Braberman, V. (2015). Specification

patterns: formal and easy. International Journal of Software

Engineering and Knowledge Engineering, 25(04), 669-700.

[6] Dwyer, M. B., Avrunin, G. S., & Corbett, J. C. (1999, May).

Patterns in property specifications for finite-state verification.

In Proceedings of the 21st international conference on Software

engineering (pp. 411-420). ACM.

[7] F. Asteasuain, f. Tarulla & P. Gamboa. Using the power of

abstraction to express high-level behavior in aspect oriented

approaches. In CONAIISI, 2017. Congreso Nacional de

Ingeniería Informática – Sistemas de Información.

[8] Vardi, M. Y. (2001, April). Branching vs. linear time: Final

showdown. In International Conference on Tools and

Algorithms for the Construction and Analysis of Systems (pp.

1-22). Springer, Berlin, Heidelberg.

[9] Andreas Bauer,Martin Leucker, and Christian Schallhart.

Monitoring of Real-Time Properties. In FSTTCS, pages 260–

272, 2006.

[10] Ben D’Angelo, Sriram Sankaranarayanan, César Sánchez,

Will Robinson, Bernd Finkbeiner, Henny B. Sipma, Sandeep

Mehrotra & Zohar Manna. LOLA: Runtime Monitoring of

Synchronous Systems. In TIME, pages 166–174, 2005.

[11] O. Lichtenstein and A. Pnueli. Checking that finite state

concurrent programs satisfy their linear specification. In Proc.

12th ACM Symp. on Principles of Programming Languages,

pages 97–107, New Orleans, January 1985.

[12] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic

verification of finite-state concurrent systems using temporal

logic specifications. ACM Transactions on Programming

Languages and Systems, 8(2):244–263, January 1986.

[13] A.P. Sistla and E.M. Clarke. The complexity of

propositional linear temporal logic. Journal ACM, 32:733–749,

1985.

[14] Grobelna, I., Wi�niewski, R., Grobelny, M., &

Wi�niewska, M. (2017). Design and verification of real-life

processes with application of Petri nets. IEEE Transactions on

Systems, Man, and Cybernetics: Systems, 47(11), 2856-2869.

[15] Lomuscio, A., Pecheur, C., & Raimondi, F. (2007).

Automatic verification of knowledge and time with NuSMV. In

Proceedings of the Twentieth International Joint Conference on

Artificial Intelligence (pp. 1384-1389). IJCAI/AAAI Press.

[16] D´Angiolo, Federico Gabriel; Suarez Martene, Juan Cruz ,

Lipovetzky José. Memoria SRAM de 1 kbit integrada en un

proceso CMOS estándar. Congreso de Microelectrónica

Aplicada. 2010. Buenos Aires.

[17] Eisner C, Fisman D (2006) A practical introduction to

PSL (series on integrated circuits and systems). Springer,

Secaucus.

[18] IEEE-Commission et al (2005) Ieee standard for property

specification language (psl). Tech. rep., Technical report, IEEE,

2005. IEEE Std 1850-2005

[19] David S, Orni A (2005) Property-by-example guide: a

handbook of psl/sugar examples-prosyd deliverable d1. 1/3

[20] Bloem R, Cavada R, Eisner C, Pill I, Roveri M, Semprini S

(2004) Manual for property simulation and assurance tool

(deliverable 1.2/4–5). In: Technical report, PROSYD Project,

Technical Report.

[21] Van Lamsweerde, A. (2001). Goal-oriented requirements

engineering: A guided tour. In Requirements Engineering,

2001. Proceedings. Fifth IEEE International Symposium on (pp.

249-262). IEEE.

[22] Rajeev Alur, Tom´as Feder, and Thomas A. Henzinger.

The Benefits of Relaxing Punctuality. J. ACM, 43(1):116–146,

1996.

[23] Ron Koymans. Specifying Real-Time Properties with

Metric Temporal Logic. Real-Time Systems, 2(4):255–299,

1990.

[24] Holzmann, G. J. (2004). The SPIN model checker: Primer

and reference manual (Vol. 1003). Reading: Addison-Wesley.

[25] Cimatti, A., Clarke, E., Giunchiglia, F., & Roveri, M.

(1999, July). NuSMV: A new symbolic model verifier. In

International conference on computer aided verification (pp.

495-499). Springer, Berlin, Heidelberg.

[26] Gammie, P., & Van Der Meyden, R. (2004, July). MCK:

Model checking the logic of knowledge. In International

Conference on Computer Aided Verification (pp. 479-483).

Springer, Berlin, Heidelberg.

[5] Asteasuain, F., & Braberman, V. (2015). Specification

patterns: formal and easy. International Journal of Software of

Engineering and Knowledge Engineering, 25(04), 669-700.

[6] Dwyer, M. B., Avrunin, G. S., & Corbett, J. C. (1999, May).

Patterns in property specifications for finite-state verification.

In Proceedings of the 21st international conference on Software

engineering (pp. 411-420). ACM.

[7] F. Asteasuain, f. Tarulla & P. Gamboa. Using the power of

abstraction to express high-level behavior in aspect oriented

approaches. In CONAIISI, 2017. Congreso Nacional de

Ingeniería Informática – Sistemas de Información.

[8] Vardi, M. Y. (2001, April). Branching vs. linear time: Final

showdown. In International Conference on Tools and

Algorithms for the Construction and Analysis of Systems (pp.

1-22). Springer, Berlin, Heidelberg.

[9] Andreas Bauer,Martin Leucker, and Christian Schallhart.

Monitoring of Real-Time Properties. In FSTTCS, pages 260–

272, 2006.

[10] Ben D’Angelo, Sriram Sankaranarayanan, César Sánchez,

Will Robinson, Bernd Finkbeiner, Henny B. Sipma, Sandeep

Mehrotra & Zohar Manna. LOLA: Runtime Monitoring of

Synchronous Systems. In TIME, pages 166–174, 2005.

[11] O. Lichtenstein and A. Pnueli. Checking that finite state t ft f

concurrent programs satisfy their linear specification. In Proc.

12th ACM Symp. on Principles of Programming Languages,

pages 97–107, New Orleans, January 1985.

[12] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic

verification of finite-state concurrent systems using temporal

logic specifications. ACM Transactions on Programming

Languages and Systems, 8(2):244–263, January 1986.

[13] A.P. Sistla and E.M. Clarke. The complexity of

propositional linear temporal logic. Journal ACM, 32:733–749,

1985.

[14] Grobelna, I., Wi�niewski, R., Grobelny, M., &

Wi�niewska, M. (2017). Design and verification of real-life

processes with application of Petri nets. IEEE Transactions on

Systems, Man, and Cybernetics: Systems, 47(11), 2856-2869.

[15] Lomuscio, A., Pecheur, C., & Raimondi, F. (2007).

Automatic verification of knowledge and time with NuSMV. In

Proceedings of the Twentieth International Joint Conference on

Artificial Intelligence (pp. 1384-1389). IJCAI/AAAI Press.

[16] D´Angiolo, Federico Gabriel; Suarez Martene, Juan Cruz ,

Lipovetzky José. Memoria SRAM de 1 kbit integrada en un

proceso CMOS estándar. Congreso de Microelectrónica

Aplicada. 2010. Buenos Aires.

[17] Eisner C, Fisman D (2006) A practical introduction to

PSL (series on integrated circuits and systems). Springer,

Secaucus.

[18] IEEE-Commission et al (2005) Ieee standard for property for

specification language (psl). Tech. rep., Technical report, IEEE,

2005. IEEE Std 1850-2005

[19] David S, Orni A (2005) Property-by-example guide: a

handbook of psl/sugar examples-prosyd deliverable d1. 1/3

[20] Bloem R, Cavada R, Eisner C, Pill I, Roveri M, Semprini S

(2004) Manual for property simulation and assurance tool

(deliverable 1.2/4–5). In: Technical report, PROSYD Project,

Technical Report.

[21] Van Lamsweerde, A. (2001). Goal-oriented requirements

engineering: A guided tour. In Requirements Engineering,

2001. Proceedings. Fifth IEEE International Symposium on (pp.

249-262). IEEE.

[22] Rajeev Alur, Tom´as Feder, and Thomas A. Henzinger.

The Benefits of Relaxing Punctuality. J. ACM, 43(1):116–146,

1996.

[23] Ron Koymans. Specifying Real-Time Properties with

Metric Temporal Logic. Real-Time Systems, 2(4):255–299,

1990.

[24] Holzmann, G. J. (2004). The SPIN model checker: Primer

and reference manual (Vol. 1003). Reading: Addison-Wesley.

[25] Cimatti, A., Clarke, E., Giunchiglia, F., & Roveri, M.

(1999, July). NuSMV: A new symbolic model verifier. In

International conference on computer aided verification (pp.

495-499). Springer, Berlin, Heidelberg.

[26] Gammie, P., & Van Der Meyden, R. (2004, July). MCK:

Model checking the logic of knowledge. In International

Conference on Computer Aided Verification (pp. 479-483).

Springer, Berlin, Heidelberg.

Página 1113

