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Abstract 

Branching logics enable the software engineer to 

express interesting type of properties and feature more 

efficient algorithms for model checking than linear 

logics.  In this work we present an extension of the FVS 

language (based on a linear representation of systems’ 

execution) in order to contemplate branching properties. 

The formal semantics of this extension, named Branching 

FVS, is also introduced in this work. As a case of study 

we model the behavior of a FLASH memory test chip, a 

classical hardware verification example. This is a 

particular domain where branching logics are heavily 

used to specify the expected behavior of systems.  

1. Introduction 

Early specification of behavior has been pinpointed by 

the community as one of the main problems to be 

addressed to consolidate the transference of software 

formal validation and verification techniques such as 

model checking [5] from the academic to the industrial 

world [11, 10]. In this context, the specification language 

chosen to describe the expected behavior of the system is 

a key factor. Most of the approaches rely on temporal 

logics as the formalism used to specify behavior. 

However, usability and expressivity of temporal logics 

have been challenged by several approaches.  A plethora 

of extensions have been proposed [1-4] in order to 

provide more expressive or more user friendly 

formalisms.  Among them, FVS [4-5] results in an 

attractive option. FVS is a declarative language based on 

graphical scenarios and features a flexible and expressive 

notation with clear and solid language semantics. FVS 

expressivity is a distinguished characteristic among 

declarative approaches since it is able to denote �-

regular properties, being for example, more expressive 

than LTL (Linear Temporal Logic) [4]. In [5] all the 

specification patterns [6] were modeled in FVS, and their 

specification was compared against other notations. The 

results showed that FVS specification turn out to be more 

succinct and easier to manipulate and validate. 

Furthermore, a tool named GTxFVS was developed 

giving support to all FVS's features [7]. However, FVS 

only contemplates linear specifications leaving out the 

possibility to denote branching properties. Branching 

flavored specifications represents an important way of 

reasoning when dealing with early behavior of systems. 

As explained in [8] one of the major aspects of all 

temporal languages is their underlying model of time. In 

linear temporal logics, time is treated as if each moment 

in time has a unique possible future. Thus, linear 

temporal logic formulas are interpreted over linear 

sequences and we regard them as describing a behavior 

of a single computation of a program. In branching 

temporal logics, each moment in time may split into 

various possible futures. Accordingly, the structures over 

which branching temporal logic formulas are interpreted 

can be viewed as infinite computation trees, each 

describing the behavior of the possible computations of a 

nondeterministic program. In the linear temporal logic 

LTL, formulas are composed from the set of atomic 

propositions using the usual Boolean connectives as well 

as the temporal connective G (“always”), F 

(“eventually”), X (“next”), and U (“until”). These 

temporal connectives can be seen as state quantifiers. The 

branching temporal CTL augments LTL by the path 

quantifiers E (“there exists a computation”) and A (“for 

all computations”). So, in CTL every temporal 

connective is preceded by a path quantifier [8].   

Although in terms of expressiveness linear and 

branching temporal logics are not comparable (there are 

properties specified in LTL that cannot be expressed in 

CTL and vice versa) [8] specific aspects in where one of 

the two outlines the other one can be stated. Most of the 

specifications and formal validations in domains such as 

hardware design are done through the use of branching 

logics [3, 8-10]. In addition, branching logics result in 

more efficient model checking given the complexity of 

the algorithms involved. Suppose we are given a 

transition system of size n and a temporal logic formula 

of size m. For the branching temporal logic CTL, model-

checking algorithms run in time O(nm) [12], while, for 

the linear temporal logic LTL, model-checking 

algorithms run in time n2
O(m

) [11]. Since LTL model 
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checking is PSPACE-complete [13], the latter bound 

probably cannot be improved [8]. 

Given this context in this work we present an 

extension of FVS named Branching FVS based on 

branching temporal logics.  A new branching semantic of 

the language is introduced and Branching FVS 

specifications are given in the hardware design world   

modeling the behavior of a FLASH memory test chip, an 

example taken from the literature [3]. 

The rest of the paper is structured as follows. Section 

2 describes Branching FVS main features whereas 

Section 3 introduces the formal semantics of the 

language. Section 4 analyzes the case of study and 

Section 5 presents the conclusions of the work. Finally, 

Section 6 mentions Future Work and Section 7 discusses 

Related Work. 

2. Branching FVS Main Features 

In this section we will informally describe the 

standing features of Branching FVS, a simple branching 

extension of the FVS language [4-5]. The reader is 

referred to the next section for a formal characterization 

of the language. FVS is a graphical language based on 

scenarios. Scenarios are partial order of events, 

consisting of points, which are labeled with a logic 

formula expressing the possible events occurring at that 

point, and arrows connecting them. An arrow between 

two points indicates precedence of the source with 

respect to the destination: for instance, in Figure 1-a A-

event precedes B-event. We use an abbreviation for a 

frequent sub-pattern: a certain point represents the next 

occurrence of an event after another. The abbreviation is 

a second (open) arrow near the destination point. For 

example, in Figure 1-b the scenario captures the very 

next B-event following an A-event, and not any other B-

event. Conversely, to represent the previous occurrence 

of a (source) event, there is a symmetrical notation: an 

open arrow near the source extreme. For example, in 

Figure 1-c the scenario captures the immediate previous 

occurrence of a B-event from the occurrence of the A-

event, and not any other B-event. Events labeling an 

arrow are interpreted as forbidden events between both 

points. In Figure 1-d A-event precedes B-event such that 

C-event does not occur between them. FVS features 

aliasing between points. Scenario in 1-e indicates that a 

point labeled with A is also labeled with A ^ B. It is 

worth noticing that A-event is repeated on the labeling of 

the second point just because of �-FVS formal syntaxes 

[15]. Finally, two special points are introduced as 

delimiters to denote the beginning and the end of an 

execution. These are shown in Figure 1-f. 

 

A B A B
Not (C)

(a) Precedence (d) Forbidden Behavior

A B

(b) Next

A B

(c)  Previous

A A and B

(e) Aliasing (f) Delimiters

Beginning of execution

Ending of Execution

 
 
Figure 1. Basic Elements in Branching FVS 

  

We now introduce the concept of FVS rules, a core 

concept in the language. Roughly speaking, a rule is 

divided into two parts: a scenario playing the role of an 

antecedent and at least one scenario playing the role of a 

consequent. In Branching FVS two types of rules can be 

defined: rules defining behavior with an existential path 

quantifier (FVS-E rules) and rules defining behavior with 

a for all path quantifier (FVS-A) rules. For the FVS-E 

rules the intuition is that if at least one time the trace 

“matches" a given antecedent scenario, then it must also 

match at least one of the consequents. For the FVS-A 

rules the intuition is that every time the trace “matches" 

a given antecedent scenario, then it must also match at 

least one of the consequents. In both cases, rules take the 

form of an implication: an antecedent scenario and one or 

more consequent scenarios. Graphically, the antecedent 

is shown in black, and consequents in grey. Since a rule 

can feature more than one consequent, elements which do 

not belong to the antecedent scenario are numbered to 

identify the consequent they belong to. In addition, FVS-

E rules are denoted with a letter E whereas FVS-A rules 

are denoted with a letter A, in order to distinguish both 

types of rules. 

 

Two examples are shown in Figure 2 modeling the 

behavior of a client-server system with FVS-A rules. 

That is, these properties must be satisfied for all possible 

computations.  The rule in the top of Figure 2 establishes 

that every request received by a server must be answered, 

either accepting the request (consequent 1) or denying it 

(consequent 2). The rule at the bottom of Figure 2 

dictates that every granted request must be logged due to 

auditing requirements.   
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not belong to the antecedent scenario are numbered to 

identify the consequent they belong to. In addition, FVS-

E rules are denoted with a letter E whereas FVS-A rules 

are denoted with a letter A, in order to distinguish both 

types of rules. 

Two examples are shown in Figure 2 modeling the 

behavior of a client-server system with FVS-A rules. 

That is, these properties must be satisfied for all possible 

computations.  The rule in the top of Figure 2 establishes 

that every request received by a server must be answered, 
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dictates that every granted request must be logged due to 

auditing requirements.   

Página 1108



 

 

Request-Received

Request-Granted
1

Request-Denied
2

Request-Granted Request-Loggued
1

1

 
 
Figure 2. FVS-A rules’ examples with a For All Path 

Quantifier 
 

 An additional requirement for the server-client 

system is added next featuring an existential path 

quantifier. The requirement is the following: It is possible 

to get to a state where started holds, but ready does not 

hold, where started and ready denote two possible states 

of the system.  The CTL formula modeling this behavior 

is the following one: EF (started � ¬ready), where E 

stands for the existential path quantifier and F stands for 

the future operator. Figure 3 shows a Branching FVS 

specification for this requirement through an FVS-E rule. 

The rule demands that at least one time since the 

beginning of the trace both events started and ¬ ready 

must hold simultaneously.  

 

started and ¬ ready
1

1

 
Figure 3. FVS-E rule example with an Existential Path 

Quantifier 

3. Branching FVS Semantics 

The semantics of Branching FVS is based on the 

formal definition of the FVS language detailed in [4,5]. 

In few words, morphisms between scenarios are defined 

in order to establish when a certain trace of the system 

satisfies a given rule. Then, the semantics of a system in 

FVS is given by the set of traces that satisfies all the 

specified rules modeling the behavior of the system. 

Based on these concepts and following the two types of 

path quantifiers introduced in CTL semantics of 

Branching FVS is tackled providing definitions of 

scenarios, morphims, rules and satisfiability for the path 

quantifier E and also for the path quantifier A. Finally, 

the semantics of a system in Branching FVS is denoted 

by those traces satisfying both types of rules. Section 3.1 

introduces the semantics for path quantifier E, Section 

3.2 introduces the semantics for path quantifier A 

whereas Section 3.3 exhibits the semantics of Branching 

FVS combining both type of rules. 

3.1. Branching FVS: Existential Path Quantifier 

An FVS scenario is described by the following 

definition. 

 

Definition 1. (FVS-E) An FVS scenario for the path 

quantifier E or simply an FVS-E scenario is a tuple ��, P, 

l, ≡, ≠, <, ∂� where: 

• � is a finite set of propositional variables 

standing for types of events; 

• P is a finite set of points; 

• l : P →PL(�) is a function that labels each point 

with a given formula precisely and  PL is the set 

of propositional formulas that can be obtained 

from the alphabet � ; 

• ≡  ⊆ P x P is an equivalence relation; 

• ≠ ⊆ P x P  is an asymmetric relation among 

points; 

• < ⊆ P ⊕ {0} x P ⊕ {�} \{�0, ��} is a 

precedence relation between points, where 0 and   

� represent the beginning and the end of 

execution, respectively; 

•  ∂: (≠ ∪ <) → PL(�) assigns to each pair of 

points, related by precedence or separation, a 

formula which constrains the set of events 

occurrences that may occur between the pair. 

 

We now formally define morphisms between 

scenarios. Intuitively, we would like to obtain a matching 

between scenarios, i.e., a mapping between their points 

exhibiting how a scenario “specializes" another one. 

 

Definition 2 (FVS-E Morphism) Given two FVS-E 

scenarios S1, S2 (assuming a common universe of event 

propositions), and f a total function between P1 and P2 we 

say that f is a morphism from S1 to S2 (denoted f: S1 → 

S2) if and only if:  

 

• l2(a) ) �11(p) is a tautology for all p ∈ P1 

and all a ∈ 2 P2 such that a ≡2 f(p); 

• ∂2(f(p),f(q)) � ∂1 (p; q) is a tautology for all 

p; q ∈ P1; 

• if p ≡1 q then f(p) ≡2  f(q) for all p; q ∈ P1; 

• if p ≠1 q then f(p) ≠2  f(q) for all p; q ∈ P1; 

• if p <1 q then f(p) <2 f(q) for all p; q ∈ P1.  

 

We now formally define FVS-E rules as a rule 

scenario playing the role of the antecedent, one or more 

consequents scenarios and finally, morphisms from the 

antecedent to the consequents. More formally: 

Request-Received

Request-Granted
1

Request-Denied
2

Request-Granted Request-Loggued
1

1

Figure 2. FVS-A rules’ examples with a For All Path
Quantifier 

An additional requirement for the server-client 

system is added next featuring an existential path 

quantifier. The requirement is the following: It is possible 

to get to a state where started holds, but d ready does not 

hold, where started and ready denote two possible states d

of the system.  The CTL formula modeling this behavior 

is the following one: EF (started � ¬ready)� , where E

stands for the existential path quantifier and F stands for F

the future operator. Figure 3 shows a Branching FVS 

specification for this requirement through an FVS-E rule. 

The rule demands that at least one time since the 

beginning of the trace both events started and d ¬ ready

must hold simultaneously.  

started and ¬ ready
1

1

Figure 3. FVS-E rule example with an Existential Path 
Quantifier 

3. Branching FVS Semantics 

The semantics of Branching FVS is based on the 

formal definition of the FVS language detailed in [4,5]. 

In few words, morphisms between scenarios are defined 

in order to establish when a certain trace of the system 

satisfies a given rule. Then, the semantics of a system in 

FVS is given by the set of traces that satisfies all the 

specified rules modeling the behavior of the system. 

Based on these concepts and following the two types of 

path quantifiers introduced in CTL semantics of 

Branching FVS is tackled providing definitions of 

scenarios, morphims, rules and satisfiability for the path 

quantifier E and also for the path quantifier A. Finally, 

the semantics of a system in Branching FVS is denoted 

by those traces satisfying both types of rules. Section 3.1 

introduces the semantics for path quantifier E, Section 

3.2 introduces the semantics for path quantifier A 

whereas Section 3.3 exhibits the semantics of Branching 

FVS combining both type of rules. 

3.1. Branching FVS: Existential Path Quantifier 

An FVS scenario is described by the following 

definition. 

Definition 1. (FVS-E) An FVS scenario for the path 

quantifier E or simply an FVS-E scenario is a tuple ��, P, 

l, ≡, ≠, <, ∂� where: 

• � is a finite set of propositional variables 

standing for types of events; 

• P is a finite set of points; 

• l : P l →PL(�) is a function that labels each point 

with a given formula precisely and  PL is the set PL

of propositional formulas that can be obtained 

from the alphabet � ; 

• ≡  ⊆ P x P is an equivalence relation; 

• ≠ ⊆ P x P  is an asymmetric relation among 

points; 

• < ⊆ P ⊕ {0} x P ⊕ {�} \{�0, ��} is a 

precedence relation between points, where 0 and   

� represent the beginning and the end of 

execution, respectively; 

• ∂: (≠ ∪ <) → PL(�) assigns to each pair of 

points, related by precedence or separation, a 

formula which constrains the set of events 

occurrences that may occur between the pair. 

We now formally define morphisms between 
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Definition 3 (FVS-E Rule) Given a scenario S0 

(antecedent) and an indexed set of scenarios and 

morphisms from the antecedent f1 : S0  → S1; f2 : S0 →  

S2; …; fk : S0 →  Sk (consequents), we call R � S0, {fi: 

Si}i=1…k � an FVS-E Rule.  

 

Finally, we can state when a trace satisfies a given 

rule. Intuitively, the rule will be satisfied if at least one 

time the antecedent is “matched” at least one of the 

consequents is matched. Since an existential path 

quantifier is being defined, it is enough to check if the 

rule is satisfied at least one time, and not every time. This 

is why the definition requires consequent(s) to be 

matched if some morphism (and not all of them) from the 

antecedent to the scenario is found.  

 

Definition 4 (FVS-E rules’ semantics) A scenario S 

satisfies an FVS-E rule R (S � R) iff for some morphism 

m: S0  → S there exists mi: Si →  S,  for some i ∈ {1..k} 

such that m = mi o fi. 

3.2. Branching FVS: For All Path Quantifier  

For the path quantifier A (“for all computations”) FVS 

semantics is given as follows. The exact same definitions 

for scenarios, morphisms and rules that were introduced 

for the path quantifier E (“there exists a computation”) 

apply for this quantifier. So, FVS-A scenarios, FVS-A 

morphisms and FVS-A rules are trivially defined. The 

only difference is given in the rules’ semantics 

definition. For the path quantifier E the rule is satisfied if 

at least one time the antecedent is “matched” at least one 

of the consequents is matched.  However, for the path 

quantifier A every time the antecedent is matched at 

least one of the consequents must be matched. The 

formal definition establishing the rule satisfiability for 

the path quantifier A in Branching FVS is given next. 

 

Definition 5 (FVS-A rules’ semantics) A scenario S 

satisfies an FVS-A rule R (S � R)  iff for every 

morphism m: S0  → S there exists mi: Si →  S,  for some 

i ∈ {1..k} such that m = mi o fi. 

 

Note that the only difference between this definition 

(Definition 5) and the previous one (Definition 4) is the 

amount of morphisms needed to be satisfied (at least one 

for the path quantifier E and all of them for the path 

quantifier A). 

3.3.  Branching FVS Semantics  

 

Now that the semantics for both kinds of path 

quantifiers are defined we can establish the formal 

semantics of the system based on the definitions 4 and 5: 

The semantic of the system is given by those traces 

satisfying the set of FVS-A and FVS-E rules. More 

formally:  

 

Definition 6 (Branching FVS Semantics) The 

semantics of a system S specified in Branching FVS is 

given by the set of traces T such that T � ER ∧ T � AR 

where ER denotes the set of all the FVS-E rules and AR 

the set of all the FVS-A rules. 

4. Case Study 

Our case of study is based on one example introduced 

in [3]. In few words, the subject of the case study is the 

“Tricky” technology FLASH memory test chip in 0.13�s 

process developed in ST Microelectronics. In particular, 

imitating the methodology introduced in [3] we focused 

on modeling some requirements for its external interface. 

The memory cell can be in one of the programming, 

reading or erasing modes. The correct functioning of the 

design at its analog level of abstraction in a given mode 

is determined by the behavior of the following interface 

signals: bl: the matrix bit line terminal; pw, the matrix p-

well terminal; wl, the matrix word line; s: the matrix 

source terminal; vt the threshold voltage of cell and id, 

the drain current of cell. 

The specification in Branching FVS for the case of 

study takes some considerations. Our language does not 

feature timing constructors such as clocks variables or 

other similar strategies. A typical way to introduce them 

is to consider the instants when a signal changes its 

value, since it can be interpreted as instantaneous events 

[3]. To this end we propose events representing changes 

on the signals such as: vt_threshold (the vt signal crosses 

the threshold) or wl_below (the bl signal is below its 

acceptable minimum). Given this context we modeled 

four properties describing the correct behavior of the cell 

in the programming mode and one property to detect the 

start of the erasing mode. 

 

The first property modeling the programming mode 

requires that whenever the vt signal crosses its threshold, 

both vt and id have to remain continuously steady until 

the id signal falls below its threshold. Events 

vt_threshold, vt_steady, id_steady and  id_falls are 

introduced to model this behavior in Branching FVS. The 

vt_threshold event represent the moment the signal 

crosses   its threshold, steady and unstable events models 

different states of the given signals and finally id_falls 

represents the moment id signal falls below its threshold. 

This requirement is modeled in the figure 4. Since this 

property must be satisfied in all moments the for all path 

Definition 3 (FVS-E Rule) Given a scenario S0

(antecedent) and an indexed set of scenarios and 

morphisms from the antecedent f1 : S0  → S1; f2ff  : S0 →  

S2; …; fk f f  : Sk 0 →  Sk (consequents), we call R k � S0, {fi{f{f : 

Si}i=1…k � an FVS-E Rule.  

Finally, we can state when a trace satisfies a given 

rule. Intuitively, the rule will be satisfied if at least one t

time the antecedent is “matched” at least one of the 

consequents is matched. Since an existential path 

quantifier is being defined, it is enough to check if the 

rule is satisfied at least one time, and not every time. This 

is why the definition requires consequent(s) to be 

matched if some morphism (and not all of them) from the m

antecedent to the scenario is found.  

Definition 4 (FVS-E rules’ semantics) A scenario S

satisfies an FVS-E rule R (S �R) iff for some morphism 

m: S0  → S there exists mimm : Si →  S,  for some i ∈ {1..k} 

such that m = mi o fi f f . 

3.2. Branching FVS: For All Path Quantifier  
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satisfies an FVS-A rule R (S � R)  iff for every 
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amount of morphisms needed to be satisfied (at least one 

for the path quantifier E and all of them for the path 

quantifier A). 

3.3.  Branching FVS Semantics  

Now that the semantics for both kinds of path 

quantifiers are defined we can establish the formal

semantics of the system based on the definitions 4 and 5: 

The semantic of the system is given by those traces

satisfying the set of FVS-A and FVS-E rules. More 

formally:  

Definition 6 (Branching FVS Semantics) The 

semantics of a system S specified in Branching FVS is S

given by the set of traces T such that T T � ER ∧ T � AR 

where ER denotes the set of all the FVS-E rules and AR

the set of all the FVS-A rules. 

4. Case Study 

Our case of study is based on one example introduced 

in [3]. In few words, the subject of the case study is the 

“Tricky” technology FLASH memory test chip in 0.13�s 

process developed in ST Microelectronics. In particular, 

imitating the methodology introduced in [3] we focused 

on modeling some requirements for its external interface. 

The memory cell can be in one of the programming, 

reading or erasing modes. The correct functioning of the 

design at its analog level of abstraction in a given mode 

is determined by the behavior of the following interface 

signals: bl: the matrix bit line terminal; pw, the matrix p-

well terminal; wl, the matrix word line; s: the matrix 

source terminal; vt the threshold voltage of cell and id, 

the drain current of cell. 

The specification in Branching FVS for the case of 

study takes some considerations. Our language does not 

feature timing constructors such as clocks variables or 

other similar strategies. A typical way to introduce them 

is to consider the instants when a signal changes its 

value, since it can be interpreted as instantaneous events 

[3]. To this end we propose events representing changes 

on the signals such as: vt_threshold (the vt signal crosses vt

the threshold) or wl_below (the bl signal is below its bl

acceptable minimum). Given this context we modeled 

four properties describing the correct behavior of the cell 

in the programming mode and one property to detect the 

start of the erasing mode. 

The first property modeling the programming mode 

requires that whenever the vt signal crosses its threshold, vt

both vt and vt id have to remain continuously steady until id

the id signal falls below its threshold. Events id

vt_threshold, vt_steady, id_steady and  id_falls are 

introduced to model this behavior in Branching FVS. The 

vt_threshold event represent the moment the signal 

crosses  its threshold, steady and unstable events models 

different states of the given signals and finally id_falls

represents the moment id signal falls below its threshold. id

This requirement is modeled in the figure 4. Since this 

property must be satisfied in all moments the for all path 
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quantifier is used. Every time the vt_threshold event 

occurs followed by the id_falls event then id and vt 

steady events  must occur in the middle, and they should 

remain in that state until id_falls event occurs (this is 

modeled by requiring the absence of the events 

id_unstable and vt_unstable). 

 

vt_threshold id_falls

vt_steady
1

id_steady
1

 
 
Figure 4. An FVS-A rule for the first property of interest. 

 

The second property requires that whenever the 

wordline wl is below its threshold (represented by the 

event wl_below) but there exists a moment in the future 

where wl will jump to above its threshold  (wl_up event) 

and the cell is not in the programming mode (represented 

by the ProgMode event) then the bitline signal bl should 

cross its threshold (represented by the bl_up event) 

before the end of the simulation. Figure 5 shows an FVS-

E rule modeling this behavior using the mentioned 

events. The bl_up event (the consequent scenario) must 

occur when the conditions required by the antecedent 

scenario are matched. 

wl_below wl_up
Not (ProgMode)

bl_up
1

 
 
Figure 5. An FVS-E rule for the Programming Mode. 

 

The third property specifies that whenever the 

programming procedure starts, the bitline signal bt 

should not fall below its threshold until the signal vt 

becomes up a certain value and the absolute value of the 

source current id goes below its threshold. The following 

events are introduced to shape this requirement: 

ProgMode, bt_down, vt_up and id_below as shown in the 

FVS-A rule in figure 6. 

 

ProgMode vt_up and id_below
1Not (bt_down)

 
 
Figure 6. An FVS-A rule for the Programming Mode. 

 

Finally, we modeled a fourth property describing the 

expected behavior of the programming mode. This 

property requires that whenever the bitline bl and 

wordline wl signals are above their thresholds, the p-well 

signal pw has to be below its threshold. The required 

events for this property are: bl_up, wl_up and pw_below. 

Figure 7  shows the FVS-A rule for this requirement. In 

this rule the consequent demands that every time events 

bl_up and wl_up occur the pw_below should also 

simultaneously occur. 

 

bl_up and wl_up bl_up and wl_up and pw_below
1

 
 
Figure 7. The fourth rule for the Programming Mode. 

 

 Regarding the erasing mode, we introduce one 

property which aims to detect when the erasing mode 

should begin (represented by the ErasingMode event). 

According to the specification detailed in [3] this occurs 

if there exists a computation where wordline signal wl is 

lower than a certain value (represented by the wl_down 

event) and p-well pw is above its threshold (represented 

by the pw_up event).  Figure 8 shows the existential FVS 

rule modeling this property.  

 
wl_down and pw_up wl_down and pw_up and ErasingMode

1

 
 
Figure 8. An FVS-E rule detecting the Erasing Mode 
 

Summing up, we showed a Branching FVS 

specification modeling the behavior of a FLASH memory 

test chip. Four rules were introduced shaping the 

behavior in the programming mode plus one additional 

rule to detect the beginning of the erasing mode. Three 

rules were expressed with the path quantifier A and two 

with the path quantifier E.  

5. Conclusions 

In this work we present an extension of the FVS 

language named Branching FVS which aims to cope with 

properties expressed in branching temporal logic. 

Branching logics enable the software engineer to express 

interesting properties and it is heavily used for hardware 

design and formal validation, besides being more 

efficient in terms of execution time when used as input 

into model checkers than linear temporal logics. 

Branching FVS features two different types of rules: 

rules preceded with a universal path quantifier and rules 

preceded with an existential path quantifier.  Branching 

FVS was shown in action modeling a case of study in the 

quantifier is used. Every time the vt_threshold event 

occurs followed by the id_falls event then id and id vt

steady events  must occur in the middle, and they should 

remain in that state until id_falls event occurs (this is 

modeled by requiring the absence of the events 

id_unstable and vt_unstable). 

vt_threshold id_falls

vt_steady
1

id_steady
1

Figure 4. An FVS-A rule for the first property of interest. 

The second property requires that whenever the 

wordline wl is below its threshold (represented by the wl

event wl_below) but there exists a moment in the future 

where wl will jump to above its threshold  (wl wl_up event) 

and the cell is not in the programming mode (represented 

by the ProgMode event) then the bitline signal bl should bl

cross its threshold (represented by the bl_up event) 

before the end of the simulation. Figure 5 shows an FVS-

E rule modeling this behavior using the mentioned 

events. The bl_up event (the consequent scenario) must 

occur when the conditions required by the antecedent 

scenario are matched. 

wl_below wl_up
Not (ProgMode)

bl_up
1

Figure 5. An FVS-E rule for the Programming Mode. 

The third property specifies that whenever the 

programming procedure starts, the bitline signal bt

should not fall below its threshold until the signal vt 

becomes up a certain value and the absolute value of the 

source current id goes below its threshold. The following 

events are introduced to shape this requirement: 

ProgMode, bt_down, vt_up and id_below as shown in the 

FVS-A rule in figure 6. 

ProgMode vt_up and id_below
1)Not (bt_down)

Figure 6. An FVS-A rule for the Programming Mode. 

Finally, we modeled a fourth property describing the 

expected behavior of the programming mode. This 

property requires that whenever the bitline bl and bl

wordline wl signals are above their thresholds, the p-well wl

signal pw has to be below its threshold. The required 

events for this property are: bl_up, wl_up and pw_below. 

Figure 7  shows the FVS-A rule for this requirement. In 

this rule the consequent demands that every time events 

bl_up and wl_up occur the pw_below should also 

simultaneously occur. 

bl_up and wl_up bl_up and wl_up and pw_below
1

Figure 7. The fourth rule for the Programming Mode.

 Regarding the erasing mode, we introduce one 

property which aims to detect when the erasing mode

should begin (represented by the ErasingMode event). 

According to the specification detailed in [3] this occurs 

if there exists a computation where wordline signal wl is wl

lower than a certain value (represented by the wl_down

event) and p-well pw is above its threshold (represented 

by the pw_up event).  Figure 8 shows the existential FVS 

rule modeling this property.  

wl_down and pw_up wl_down and pw_up and ErasingMode
1

Figure 8. An FVS-E rule detecting the Erasing Mode

Summing up, we showed a Branching FVS 

specification modeling the behavior of a FLASH memory 

test chip. Four rules were introduced shaping the 

behavior in the programming mode plus one additional 

rule to detect the beginning of the erasing mode. Three 

rules were expressed with the path quantifier A and two 

with the path quantifier E.  

5. Conclusions 

In this work we present an extension of the FVS 

language named Branching FVS which aims to cope with 

properties expressed in branching temporal logic. 

Branching logics enable the software engineer to express 

interesting properties and it is heavily used for hardware 

design and formal validation, besides being more 

efficient in terms of execution time when used as input 

into model checkers than linear temporal logics. 

Branching FVS features two different types of rules: 

rules preceded with a universal path quantifier and rules 

preceded with an existential path quantifier.  Branching 

FVS was shown in action modeling a case of study in the 
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hardware design world. The formal semantics of the 

language is also presented in this work.  Although further 

work is needed to consolidate our approach, we consider 

this extension a solid first step for FVS in the branching 

logic world.  

6. Future Work 

There are several lines of research which may 

continue this work. First of all, we would like to use 

Branching-FVS specifications as input to formal 

validation tools like model checkers. In order to 

accomplish this objective, we need to revisit the tableau 

algorithm that translates FVS scenarios into Büchi 

automata [4] so that Branching-FVS scenarios can be 

translated too. We consider that this will be shortly 

achieved since Branching-FVS is a simple extension of 

FVS. This line of research also includes incorporating 

Branching FVS features into our tool GTxFVS [7] which 

currently holds FVS features only. 

Secondly, we would like to compare Branching FVS 

with other known notations such as Petri Nets or other 

CTL extensions like [3,15] taking into account issues like 

usability, flexibility and expressive power. We also 

would like to continue exploring Branching-FVS in the 

hardware verification domain considering case of studies 

such as [16]. 

Finally, inspired in the work of [15] we would like to 

explore Branching-FVS and formal verification in the 

Artificial Intelligence domain.  

7. Related Work 

The language PSL [17-18] is widely used by chip 

design and verification engineers across the hardware 

verification community. Hardware properties can be 

specified in PSL in order to verify the expected behavior. 

The language originated as the Sugar language and later 

evolved into an IEEE standard. It is heavily based on 

temporal logics (LTL), augmented with regular 

expressions. We share some objectives with PSL. In the 

same spirit of our work, they acknowledge the need and 

value of reviewing and validating properties 

specification. However, this feature is achieved by 

introducing tools build on the top of PSL [19-20]. So, 

contrary to Branching-FVS, validation capabilities 

require tool support and cannot be obtained directly from 

PSL specifications. 

On the top of SPL work in [3] introduces Signal 

Temporal Logic (STL) specification language, and is 

implemented in a stand-alone monitoring tool (AMT), 

which constitutes a solid approach for hardware 

verification purposes. Timed requirements can be 

denoted in STL Logics since timed constructors are 

available in the language. However, specifications in 

STL resemble programming languages constructions 

which may lead to premature operational decisions. In 

this sense, graphical and declarative notations such as 

Branching FVS might be closer to the way requirements 

are expressed [21], which make easier the behavioral 

exploration and specification of systems.  

Real-time monitoring of the timed LTL (TLTL) logic 

is studied in [9]. TLTL specifications are interpreted over 

finite traces with the 3-valued semantics. The extensions 

of temporal logics that deal with richer properties were 

also considered in monitoring tools such as LOLA [10]. 

Other known realtime extensions of LTL are Temporal 

logics MTL [23] and MITL [22]. Branching FVS is yet 

only a specification language and needs further work in 

order to incorporate Branching-FVS specifications into 

validations tools such as model checkers [24-25]. 

Clearly, the road taken by these approaches from 

specification languages to formal validation tools will 

inspire our future work.   

Work in [14] presents a technique based on Petri Nets 

which focuses on the design and verification methods of 

distributed logic controllers supervising real life 

processes. We believe comparing usability, flexibility 

and expressivity of Petri Nets, temporal logic and other 

approaches like Branching FVS constitutes an appealing 

line of research to address in the mid-term future. 

Among branching logics extensions with formal 

verification purposes in other domains it is worth 

mentioning [15] and MCK [26]. They define some CTL 

extensions focused in the Artificial Intelligence and multi 

agent system domain. We share with these and other 

similar approaches the need for more expressive 

specification languages. In this sense, we believe that 

there is an opportunity for Branching FVS in this domain 

given its flexibility and expressive power.     
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